Earliest bat shows flight developed before echolocation

Blogging on Peer-Reviewed ResearchTheir heads and bodies of bats have amassed an extraordinary array of adaptations that have make them lords of the night sky. Today, the thousand-plus types of bats make up a fifth of living mammal species. Richard Dawkins once described the evolution of bats as “one of the most enthralling stories in all natural history” and as of this week, the story has a clearer beginning.

OnychonycterisThe success of bats hinges on two key abilities: their mastery of flight, a feat matched only by birds and insects; and echolocation, the ability to navigate their way through pitch-blackness by timing the reflections of high-pitched squeaks. For evolutionary scientists, the big question has always been: which came first?

The ‘clawed bat’

Until now, fossil bats haven’t provided any clues for all of them show signs of both echolocation and flight. But a stunning new fossil, discovered by Nancy Simmons from the American Museum of Natural History is an exception and it provides a categorical answer to the long-running debate – the earliest bats could fly but could not echolocate.

The new creature hails from the Green River in Wyoming and is known as Onychonycteris, meaning “clawed bat”. Its fossils date back to about 52.5 million years ago and by comparing it to other prehistoric bats, Simmons found that it is the most ancient member of this lineage so far discovered. It acts as a ‘missing link’ in bat evolution, much like the famous Archaeopteryx hinted that birds may have evolved from dinosaurs.

Continue reading

Third cousin couples have the most children and grandchildren

Blogging on Peer-Reviewed ResearchMarriage between closely related cousins is a heavy taboo in many cultures and its critics often cite the higher risk of genetic diseases associated with inbreeding. That risk is certainly apparent for very close relatives, but a new study from Iceland shows that very distant relatives don’t have it easy either. In the long run, they have just as few children and grandchildren as closely related ones.

Shuffling the genetic deck

Indian marriageSex chromosomes aside, every person has two copies of each gene, one inherited from their father and one by their mother. Not every gene will be in correct working order, but there’s a good chance that a faulty copy will be offset by a functional one from the other parent.

However, if two parents are closely related, there’s a higher-than-average chance that they will already share some of the same genes and a similarly increased chance that their child will receive two defective copies. That can be very bad news indeed and in cases where important genes are affected, the results can include miscarriage, birth defects or early death.

Sex, then, is a shuffling of their genetic deck and theoretically the more closely related the partners are, the greater the chance that their child will be dealt a dud hand. And yet, some studies have found that some closely related couples actually do better than distant relatives in terms of the number of children they manage to raise. This trend is certainly unexpected and the big question is whether it is the result of biology or money.

Continue reading

Malawi cichlids – how aggressive males create diversity

Blogging on Peer-Reviewed ResearchCertain groups of animals show a remarkable capacity for quickly evolving into new species to seize control of unexploited niches in the environment. And among these ecological opportunists, there are few better examples than the cichlids, a group of freshwater fishes that are one of the most varied group of back-boned animals on the planet.

Malawi cichlidsIn the words of Edward O. Wilson, the entire lineage seems “poised to expand.” The Great Lakes of Africa – Tanganyika, Malawi and Victoria – swarm with a multitude of different species; Lake Malawi alone houses over 500 that live nowhere else in the world.

All of these forms arose from a common ancestor in a remarkably short span of time. Now, a new study suggests that this explosive burst of diversity has been partly fuelled by rivalry between hostile males.

Michael Pauers of the Medical College of Wisconsin found that male cichlids have no time for other males that look like them and will bite, butt and threaten those who bear the same colour scheme. In doing so, they encourage diversity in the lake since mutant males with different tints are less likely to be set upon by territorial defenders.

Continue reading

Colour-changing chameleons evolved to stand out, not blend in

Blogging on Peer-Reviewed ResearchChameleons aren’t exactly known for being showy. Indeed, they are so synonymous with blending in that we use the term ‘social chameleon’ to refer to people who are at home in any social setting. But new research suggests that this reputation needs a rethink. The chameleon’s ability to change colour evolved not to blend in, but to stand out.

Chameleon headChameleons are a group of small lizards that are almost synonymous with camouflage. Common folklore has it that their vaunted ability to change their skin colour allows them to go undetected in a variety of environments.

Certainly, their default colours match their surroundings well. But Devi Stuart-Fox and Adnan Moussalli from South Africa have found that the changing hues they are best known for evolved for communication not disguise. They allow chameleons to make themselves incredibly but temporarily noticeable to mates and rivals, while remaining inconspicuous for the rest of the time.

Continue reading

Blind cavefish not so blind, Beetlemania and other tidbits…

Stories about cavefish are like buses – you get a seeming infinity of nothing and then loads turn up at once. Just 10 posts ago, I wrote about a study which found that you can restore sight to blind cavefish by cross-breeding individuals from different caves.

The different populations lost their eyes through changes to different sets of genes and in the hybrids, each faulty version was paired with a working one. As a result, the hybrids had fully formed and functional eyes despite having lived in darkness for a million years.

Now, a new study shows that the larvae of blind cavefish can detect light (or more accurately, shadows) too, even without working eyes. They can detect shadows and seek shelter in them, just like the sighted surface-dwelling versions of the same species. The key to the behaviour is their pineal gland, a small organ that regulates the body clock and, in some species, is sensitive to light.

I wrote up the research for Nature News; mosey on over for the full story and some possible explanations for why the fish’s pineal has retained the ability to detect light, even though its eyes have been lost.

Some other things to mention:

Sex runs hot and cold – why does temperature control the gender of Jacky dragons?

Blogging on Peer-Reviewed ResearchAmong Jacky dragons, females are both hot and cool, while males are merely luke-warm. For this small Australian lizard, sex is a question of temperature. If its eggs are incubated at low temperatures (23-26ºC) or high ones (30-33ºC), they all hatch as females; anywhere in the idle, and both sexes are born.

Jacky dragonThis strategy – known as ‘temperature-dependent sex determination (TSD) – seems unusual to us, with our neat gender-assigning X and Y chromosomes, but it’s a fairly common one for reptiles. Crocodiles are all-male at high temperatures and all-female at low ones, while turtles flip the rules around and produce more males in cooler climes. Now, a thirty-year old idea to explain this puzzling system has finally been confirmed.

Assigning gender based on temperature is not uncommon but it is nonetheless puzzling. Gender seems like an incredibly fundamental physical trait to leave to something as variable as the temperature of your surroundings. How has such a system evolved? What possible benefits could a species receive by switching control of from chromosomes to the environment?

Continue reading

Loss of big mammals breaks alliance between ants and trees

Blogging on Peer-Reviewed ResearchThe natural world is full of alliances forged between different species, cooperating for mutual rewards. The relationship between ants and acacia trees was one of the first of these to be thoroughly studied. But new research suggests that this lasting partnership may be sundered by the unlikeliest of reasons – the decline of Africa’s large mammals.

Giraffe next to whistling-thorn acaciaAcacias are under constant attack from hungry animals, from tiny caterpillars to towering giraffes. In response, many species like the whistling-thorn tree (Acacia drepanolobium) recruit colonies of ants as bodyguards. Any hungry herbivores eager to chomp on the acacia’s leaves quickly get a mouthful of biting, stinging ants. The tree is a fair employer. In return for their services, its ant staff receive a sugary and nutritious nectar as food and hollow swollen thorns called ‘domatia’ as board.

But this pact is a fragile one. Todd Palmer from the University of Florida and colleagues from the USA, Canada and Kenya have found that it rapidly breaks down if the large animals that graze on the acacia disappear. Without the threat of chomping mouths, the trees reduce their investments in bodyguards to the detriment of both partners.

Palmer demonstrated this with plots of land in Kenya’s Laikipia Plateau, where fences have kept out large plant-eaters for over a decade. Since 1995, no herbivore larger than a small antelope has entered the four-hectare “exclosures” in an attempt to study the effect of these animals on the local ecology.

Within these 10 years, Palmer found that the majority of trees produced fewer domatia and less nectar and unexpectedly, the strongest alliances were hit the hardest. What were once happy partners quickly became selfish rivals.

Continue reading

Newborn babies have a preference for the way living things move

Blogging on Peer-Reviewed ResearchFrom an animal’s point of view, the most important things in the world around it are arguably other animals. They provide mates, food, danger and companionship, so as an animal gazes upon its surroundings, it pays for it to be able to accurately discern the movements of other animals. Humans are no exception and new research shows that we are so attuned to biological motion that babies just two days old are drawn to extremely simple abstract animations of walking animals.

Running animal Animals move with a restrained fluidity that makes them stand out from inanimate objects. Compared to a speeding train or a falling pencil, animals show far greater flexibility of movement but most are nonetheless constrained by some form of rigid skeleton. That gives our visual system something to latch on to.

In 1973, Swedish scientist Gunnar Johansson demonstrated this to great effect by showing that a few points of light placed at the joints of a moving animal to simulate its gait. When we see these sparse animations, we see them for what they represent almost instantaneously.

Don’t believe me? Just look at this human walker from Nikolaus Troje’s BioMotion Lab website. With just fifteen white dots, you can not only simulate a walking adult, but you can also tell if it’s male or female, happy or sad, nervous or relaxed. Movement is the key to the illusion – any single static frame merely looks like a random collection of unconnected dots. But once they start to move in time, the brain performs an amazing feat of processing that extract the image of a human from the random dots.

Continue reading

Evolutionary arms race turns ants into babysitters for Alcon blue butterflies

Blogging on Peer-Reviewed ResearchIn the meadows of Europe, colonies of industrious team-workers are being manipulated by a master slacker. The layabout in question is the Alcon blue butterfly (Maculinea alcon) a large and beautiful summer visitor and its victims are two species of red ants, Myrmica rubra and Myrmica ruginodis.

Myrmica rubra and an Alcon blue butterfly caterpillarThe Alcon blue is a ‘brood parasite’ – the insect world’s equivalent of the cuckoo. David Nash and European colleagues found that its caterpillars are coated in chemicals that smell very similar to those used by the two species it uses as hosts. To ants, these chemicals are badges of identity and so similar are the caterpillars that the ants adopt them and raise them as their own. The more exacting the caterpillar’s chemicals, the higher its chances of being adopted.

The alien larvae are bad news for the colony, for the ants fawn over them at the expense of their own young, which risk starvation. If a small nest takes in even a few caterpillars, it has more than a 50% chance of having no brood of its own. That puts pressure on the ants to fight back and Nash realised that the two species provide a marvellous case study for studying evolutionary arms races (which I’ve blogged about before here).

Theory predicts that if the parasites are common enough, they should be caught in an ongoing battle with their host, evolving to become more sophisticated mimics, while the ants evolve to become more discriminating carers. The two species make a particularly good model for this because their geographical ranges overlap in a fractured mosaic.

Continue reading

Assassin bugs deceive spiders with coat of many corpses

Blogging on Peer-Reviewed ResearchThe animal world is full of charlatans. Some have bodies shaped by natural selection to fade into the background or resemble other harmful species. Yet others, like chameleons and octopuses, have the rare ability to actively change their colour or shape to actively hide themselves from view.

Assassin bugMany species disguise themselves through their behaviour rather than their bodies; like human soldiers in camouflage gear, they don special suits to remain inconspicuous.

Decorator crabs, for example, coat their shells with a collection of sea anemones, algae, corals and sponges, held on with Velcro-like bristles while other crabs actively carry these living masks with specially modified legs. These species have the cartoonish air of a man carrying a pot plant in front of him while sneaking past on tip-toes. But some charlatans are not so amusing.

Robert Jackson and Simon Pollard from the University of Canterbury have been studying a pretender with a much more gruesome disguise – the ant-snatching assassin bug Acanthaspis petax, which covers itself with the corpses of its own prey.

Continue reading

Cuttlefish tailor their defences to their predators

Blogging on Peer-Reviewed ResearchThe best communicators know to cater to their audiences, and cuttlefish are no different. A new study shows that these intelligent invertebrates can target their defensive signals to the hunting styles of different predators.

CuttlefishCuttlefish and their relatives, the octopuses and squid, are expert communicators whose incredible skins can produce a massive range of colours and patterns. Cuttlefish mostly use these abilities to blend into the background but they can also startle and intimidate predators by rapidly changing the display on their dynamic skins.

Keri Langridge and colleagues from the University of Sussex, watched young cuttlefish as they were threatened by three very different predators – juvenile seabass, dogfish (a type of shark) and crabs. A glass partition protected the cuttlefish from any actual harm but gave them full view of the incoming threats.

She found that the cuttlefish only ever used startling visual displays when they were faced by seabass, which hunt by sight. As the fish approached, the young cuttlefish suddenly flattened their bodies to make themselves look bigger and flashed two dark eye-spots on their backs to startle the predator. This pattern is called a ‘deimatic display’ and it was used in 92% of encounters with seabass.

There’s a video of the deimatic display after the jump…

Continue reading

Songbirds need so-called “human language gene” to learn new tunes

Blogging on Peer-Reviewed ResearchThe nasal screech of Chris Tucker sound worlds apart from the song of a nightingale but both human speech and birdsong actually have a lot in common. Both infants and chicks learn their respective tongues by imitating others. They pick up new material most easily during specific periods of time as they grow up, they need practice to improve and they pick up local dialects. And as infants unite words to form sentences, so do songbirds learn to combine separate riffs into a full song. Songbirds need so-called “human language gene” to learn new tunes

Because of these similarities, songbirds make a good model for inquisitive neuroscientists looking to understand the intricacies of human speech. Zebra finches are a particularly enlightening species and they have just shown Sebastian Haesler that the so-called human ‘language gene’ FOXP2 also controls an songbird’s ability to pick up new material.

FOXP2 has a long and sordid history of fascinating science and shoddy science writing. It has been consistently mislabelled as “the language gene” and after the discovery that the human and chimp versions differed by just two small changes, it was also held responsible for the evolution of human language. Even though these claims are far-fetched (for reasons I’ll delve into later), there is no doubt that faults in FOXP2 can spell disaster for a person’s ability to speak.

Mutated versions cause a speech impairment called developmental verbal dyspraxia (DVD), where people are unable to coordinate the positions of their jaws, lips, tongues and faces, even though their minds and relevant muscles are in reasonable working order. They’re like an orchestra that plays a cacophony despite having a decent conductor and tuned instruments.

Brain scans of people with DVD have revealed abnormalities in the basal ganglia, an group of neurons at the heart of the brain with several connections to other areas. Normal people show strong activation of FOXP2 here and fascinatingly, so do songbirds. Haesler reasoned that studying the role of this gene in birds could tell him more about its human counterpart.

Continue reading

Follow

Get every new post delivered to your Inbox.

Join 37 other followers