Buzzing bees scare elephants away

It’s a myth that elephants are afraid of mice, but new research shows that they’re not too keen on bees. Even though they fearlessly stand up to lions, the mere buzzing of bees is enough to send a herd of elephants running off. Armed with this knowledge, African farmers may soon be able to use strategically placed hives or recordings to minimise conflicts with elephants.

Elephants turn tail at the sound of beesIain Douglas-Hamilton and Fritz Vollrath from Kenyan conservation charity Save the Elephants first suspected this elephantine phobia in 2002, when they noticed that elephants were less likely to damage acacia trees that contained beehives.

Animals as powerful as the African elephant can go largely untroubled by predators. Their bulk alone protects them from all but the most ambitious of lion prides.

But these defences do nothing against the African bees, which can sting them in their eyes, behind their ears and inside their trunks. Against these aggressive insects, the elephants are well justified in their caution and local people have reported swarms of bees chasing elephants for long distances.

Continue reading

Trout with salmon parents could help to revive endangered fish species

Japanese researchers have developed a way of using one species of fish as a surrogate parent for an endangered one by transplanting the sexual equivalent of stem cells. If enough of these cells can be preserved, an extinct species could be resurrected.

Getting excited when fish produce sperm would usually get you strange looks. But for Tomoyuki Okutsu and colleagues at the Tokyo University of Marine Science and Technology, it’s all part of a day’s work. They are trying to use one species of fish as surrogate parents for another, a technique that could help to preserve species that are headed for extinction.

Baby trout can be born from salmon parents using transplanted sex cells.Okutsu works on salmonids, a group of fish that includes salmon and trout. Many members of this tasty clan have suffered greatly from over-fishing in the last few decades, and their populations are dwindling their way to extinction.

If stocks fall below a critical level, they may need a jump-start. One strategy is to freeze some eggs to be fertilised artificially, in the way that many human eggs are in fertility clinics. But it’s much harder for fish eggs – they are large and have lots of fat, which makes them difficult to freeze effectively.

Okutsu’s group have hit on a more effective solution. They use transplanted sexual stem cells to turn another species of fish into surrogate parents for the endangered ones.

Continue reading

Genetic study puts damper on gray whales’ comeback

The eastern Pacific gray whale has bounced back from the brink of extinction to a healthy population of 22,000 individuals. But by measuring the genetic diversity of these whales, scientists have estimated that the original population was up to five times larger. The whales aren’t out of the danger zone yet, and climate change may explain why.

Twenty-two thousand sounds like a huge number. It’s happens to be number of eastern Pacific gray whales currently swimming off the coast of North America. It’s certainly much larger than 140, the number of whales that aboriginal people of this area are allowed to hunt. And it’s far, far bigger than zero, the population size that the whales were rapidly approaching in the mid 20th century.

The gray whale hasn’t fully recovered from a century or more of huntingObviously, it’s all relative. Twenty-two thousand is still much less than ninety-six thousand. That’s the size of the original gray whale population and it’s three to five times the current count. Not exactly cause for conservational complacency, then.

Previously, conservationists and whalers alike could only speculate on the number of whales that lived before their flirtation with extinction. But now, Elizabeth Alter and Stephen Palumbi from Stanford University have managed to pin down a figure by looking at the genetic diversity of living whales. And their results suggest that despite a rebound that Hollywood would envy, the grays are still a pale shadow of their former strength.

Continue reading

Is a virus responsible for the disappearing bees?

A group of scientists have found that a virus – IAPV – may be responsible for Colony Collapse Disorder, the mysterious condition that’s emptying the hives of European and American beekeepers.

A bee sits on a readout of its own genetic material.In 2006, American and European beekeepers started noticing a strange and worrying trend – their bees were disappearing. Their hives, usually abuzz with activity, were emptying.

Like honeycombed Mary Celestes, there was no trace of the workers or their corpses either in or around the ghost hives, which still contained larvae and plentiful stores of food. It seemed that entire colonies of bees had apparently chosen not to be.

The cause of the aptly named ‘Colony Collapse Disorder’, or CCD, has been hotly debated over the last year. Fingers were pointed at a myriad of suspects including vampiric mites, pesticides, electromagnetic radiation, GM crops, climate change and poor beekeeping practices. And as usual, some people denied that there was a problem at all.

But a large team of US scientists led by Diana Cox-Foster and Ian Lipkin have used modern genomics to reveal the main villain in this entomological whodunnit – a virus called Israeli Acute Paralysis Virus or IAPV.

Continue reading

Restoring predator numbers by culling their prey

Helping out a threatened predator by culling their prey seems like a really stupid idea. But Scandinavian scientists have found that it might be the best strategy for helping some of our ailing fish stocks.

Lennart Persson and colleagues from Umeå University came up with this counterintuitive idea by running a 26-year natural experiment with the fish of Lake Takvatn, Norway.

The brown trout increases the numbers of its prey by eating it!At the turn of the 20th century, the top predator in Lake Takvatn was the brown trout. Over-fishing sent its numbers crashing, and it was virtually gone by 1980.

In its place, a smaller fish – the Arctic char ­– was introduced in 1930. Char should make a good meal for trout, so it was surprising that when the trout were reintroduced they failed to flourish despite an abundance of food.

It was only in the 1980s, when the researchers removed over 666,000 char from the lake that the trout started bouncing back. While their prey population fell by 80%, the trout have increased in number by 30 times. The lake’s temperature and nutrient levels were mostly constant during this time, so why did the trout do better when they prey was culled?

Persson believes that it’s not the numbers of the char, but their size that matters, and that changed irrevocably when the trout first vanished.

More predation means more prey?

Paradoxically, predators like trout, can actually increase the numbers of small prey by eating them. It seems like a strange idea, but it happens because the remaining prey face less competition for food. As a result, they grow more rapidly, mature faster and give rise to more young.

By growing too large, the Arctic char muscled the trout out of Lake Takvatn.This means the population becomes, on average, smaller, since individuals spend less time growing and fill the water with baby fish. And that’s good news for predators. But take the predator out and the whole system grinds to a halt.

Conservationists often like to believe that an over-hunted predator will just bounce back into its original niche once hunting is stopped. But things are rarely that simple. In the predator’s absence, other species will rush in to fill the gap and the entire system can settle down into a new balance, which the predator can find very hard to slot back into.

Practicalities

In Lake Tyvatn, the absence of the trout meant that the char population faced no threats and competed heavily for resources. They grew and reproduced slowly, reaching sizes too large for the trout to tackle. The proportions of small char fell to a level which could not support reintroduced trout. Essentially, while the predator was away, the prey took it easy and locked the door so it couldn’t get back.

When the char were culled, this mimicked the effects of trout predation by removing the largest individuals. As a result, the numbers of smaller, trout-friendly char doubled and began to dominate the lake. And that shift finally allowed the trout to regain a foothold (or finhold) in the lake. The two fish have now established a balance in numbers for over 15 years.

Persson’s study clearly shows that removing a predator from its habitat (an all-too common occurrence) doesn’t create a predator-shaped hole in the ecosystem, ready to be filled again. Instead, it causes drastic changes to local food webs, that can only be reversed with counter-intuitive and ingenious strategies.

Stocks of predatory fish, including sharks, salmon, cod and trout, are threatened by over-fishing all over the world, and Persson believes that his strategy could help them to recover.

For example, the falling cod population in the Baltic sea could potentially be restored by fishing for its prey, like herring or sprat. It’s so crazy, it just might work.

 

Reference: Persson, Amundsen, de Roos, Klemetsen, Knudsen & Primicerio. 2007. Culling prey promotes predator recovery – alternative states in a whole-lake experiment. Science 316: 1743- 1746.

Related post on over-fishing:
Shark-hunting harms animals at bottom of the food chain
and others on changing ecosystems:
Attack of the killer mice – introduced rodents eat seabird chicks alive
The fox and the island: an Aleutian fable
Farmed salmon decimate wild populations by exposing them to parasites

Technorati Tags: , , , , , ,

Climate change responsible for decline of Costa Rican amphibians and reptiles

Amphibians around the world are facing extinction from habitat loss and a killer fungus. Now, climate change joins their list of enemies. In Costa Rica, warmer and wetter days have led to a loss of rainforest leaf litter that has sent amphibian and reptile populations crashing.

Miners used to take canaries into unfamiliar shafts to act as early warning systems for the presence of poisons. Today, climate scientists have their own canaries – amphibians.

The golden toad was one of the first casualties in the great amphibian decline.Amphibians – the frogs, toads and salamanders – are particularly susceptible to environmental changes because of their fondness for water, and their porous absorbing skins. They are usually the first to feel the impact of environmental changes.

And feel it they have. They are one of the most threatened groups of animals and one in three species currently faces extinction. The beautiful golden toad (right) was one of the first casualties and disappeared for good in 1989. Even though they are less glamorous than tigers, pandas or polar bears, amphibians are a top priority for conservationists.

The usual factors – introduced predators and vanishing habitats – are partially to blame, but many populations have plummeted in parts of the world untouched by pesky humans.

More recently, a large number of these deaths have been pinned on a fatal fungal disease called chytridiomycosis. Hapless individuals become infected when they swim in water used by diseased peers, and fungal spores attach to their skins. The disease had decimated amphibians across the Americans.

A third of the world’s amphibians face extinction, if not more.The extent of the damage may be even worse than we think. We have very little long-term data on the population sizes of many amphibian species, particularly in the tropics, where the greatest diversity exists. One of the few sites to buck the trend of ignorance is La Selva Biological Station in Costa Rica, which has been monitoring amphibian populations since the 1950s.

Steven Whitfield and colleagues from Florida International University used the La Selva data to analyse the populations of a species living among the leaf litter that covers the local rainforest floor. The team ran their census of about 30 species of amphibians, as well as many reptiles (lizards and snakes).

To their astonishment, the populations of these species had plummeted by 75% in 35 years. This massive decline is worrying for many reasons, the least of which is that La Selva sits within a protected area. Habitat destruction is non-existent here, so something else must be happening.

Nor is chytridiomycosis to blame. The fungus doesn’t tolerate high temperatures and only grows in temperate regions or mountainous ones. La Selva is neither. The killer fungus marks its presence with rapid falls in amphibian numbers within months, but these declines took place over decades.

And most tellingly of all, the reptiles suffered population losses as great as those of the amphibians. With their dry, scaly skins, reptiles lack the amphibian vulnerability to chemicals and chytridiomycosis. Something else is afoot.

Warmer and wetter days are diminishing the leaf litter that amphibians and reptiles call home.Whitfield believes that climate change is the answer. Over the past 35 years, La Selva has experienced wetter and warmer days. Temperatures have gone up by one degree Celsius, which slows the growth of local trees, and reduces the volume of leaves that they shed. The number of dry days has halved, and with more rainfall, the leaves that do fall decay faster.

So these combined climate changes have conspired to reduce the levels of leaf litter in the forest, robbing amphibians and reptiles alike of their homes. Even in this protected area, habitat destruction is going on right under our feet.

The climate change idea explains another odd finding. Whitfield saw that amphibian and reptile numbers had not declined in nearby abandoned cacao plantations. That’s because cacao trees shed their leaves throughout the year and provide a continual supply of new leaf litter.

The picture for the world’s amphibians seemed bleak enough, but it seems that we have been ignoring a larger simmering danger in the face of the immediate threat of chytridiomycosis. It is telling that all but one of the disappearing species in this study are listed as ‘least concern’ by the World Conservation Union (IUCN). Whitfield’s study should be a call to action for conservationists.

Reference: Whitfield, Bell, Phillippi, Sasa, Bolanos, Chaves, Savage & Donnelly. 2007. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. PNAS doi.0611256104.

Technorati Tags: , , , , , , ,

Attack of the killer mice – introduced rodents eat seabird chicks alive

On Gough island, introduced mice have developed a grisly appetite for seabird chicks and could well drive local species to extinction.

As Charles Darwin learned several centuries ago, islands are havens for evolution. Newcomers to these isolated worlds find themselves unshackled from the predators that dogged them on the mainland. They celebrate their freedom by diversifying into a great variety of species.

A Gough Island mice sites amid a grisly pile of chick bodies.But predators still have ways of tracking them down, and following the footsteps of sailors is one of them. By killing adults and eating eggs, introduced predators such as rats, cats and stoats are responsible for nine in ten of the bird extinctions since 1600.

Now, conservation agencies are getting serious about introduced predators. As an example, they have spent increasingly large budgets in recent years on the eradication of rats from troubled islands.

Smaller stowaways like mice typically escape the conservationists’ wrath, and between 2001 and 2005, twenty-five times less money was spent on dealing with them. After all, mice are smaller and less opportunistic than rats and pose very little threat to seabirds.

Or at least that was what scientists used to think. In 2005, Ross Wanless, Peter Ryan and colleagues from the University of Cape Town found that on Gough Island in the south Atlantic, mice had developed sinister appetites. They were eating the chicks of local seabirds alive (see image below).

Infrared footage shows mice feeding on a chick.

House mice were introduced to Gough Island, now a World Heritage Site, in 1888 and are the only introduced mammals there. They share the island with large seabird colonies including many endangered species, and the last breeding populations of the Tristan albatross and the Atlantic petrel.

The mice seemed to be co-existing peacefully until the turn of the millennium, when some of the seabirds started experiencing massive breeding losses.

Wanless investigated and by watching about 300 nests, he found video evidence that the mice have developed a taste for albatross, petrel and shearwater chicks. They were attacking and eating chicks up to 300 times their weight, and often en masse.

Albatross chicks are not defenceless and will often ward off much larger avian hunters like the sub-Antarctic skua or the southern giant petrel. But they have also been spoilt through an evolutionary history free of mammalian dangers. The chicks have no idea how to react to mice, let alone defend themselves, hapless and helpless.

To save endangered birds like the albatross, ALL introduced predators must be dealt with.In fact, Wanless describes the mice as parasites rather than predators. They often don’t kill the chicks outright but slowly feed from open wounds over the course of days.

Typically, 60-75% of Tristan albatross young survive their first year. But thanks to the voracious mice, only 27% now do so on Gough Island. As a result, the population of this already vulnerable bird has crashed by over a quarter since the 1960s.

The birds of Gough Island will clearly need some assistance. Meanwhile, Wanless is sounding the alarm for other islands where introduced mice roam free.

On islands where they are not alone, larger introduced predators like cats or rats may be helping to keep their numbers down. The danger then, is that when conservationists get rid of these larger problems, they may unwittingly unleash a smaller foe on the native animals.

This very situation seems to be playing out on Marion Island in the South Indian ocean. In the 1990s introduced cats were finally eradicated from the island, leaving mice as the only mammal aliens around.

And sure enough, Ryan has found that several wandering albatross chicks have died of wounds consistent with mouse attacks. These attacks could be much more widespread than we had realised.

The message is clear – eradication programmes for introduced animals should target all potential predators, whether big or small. As in the case of sharks and scallops dealt with elsewhere in this blog, the removal of top predators can often doom animals at the bottom of the food chain by releasing hunters in the middle tier.

Reference: Wanless, Angel, Cuthbert, Hilton & Ryan. 2007. Can predation by invasive mice drive seabird extinctions? Biology Letters doi:10.1098/rsbl.2007.0120

Follow

Get every new post delivered to your Inbox.

Join 37 other followers