Cuttlefish tailor their defences to their predators

Blogging on Peer-Reviewed ResearchThe best communicators know to cater to their audiences, and cuttlefish are no different. A new study shows that these intelligent invertebrates can target their defensive signals to the hunting styles of different predators.

CuttlefishCuttlefish and their relatives, the octopuses and squid, are expert communicators whose incredible skins can produce a massive range of colours and patterns. Cuttlefish mostly use these abilities to blend into the background but they can also startle and intimidate predators by rapidly changing the display on their dynamic skins.

Keri Langridge and colleagues from the University of Sussex, watched young cuttlefish as they were threatened by three very different predators – juvenile seabass, dogfish (a type of shark) and crabs. A glass partition protected the cuttlefish from any actual harm but gave them full view of the incoming threats.

She found that the cuttlefish only ever used startling visual displays when they were faced by seabass, which hunt by sight. As the fish approached, the young cuttlefish suddenly flattened their bodies to make themselves look bigger and flashed two dark eye-spots on their backs to startle the predator. This pattern is called a ‘deimatic display’ and it was used in 92% of encounters with seabass.

There’s a video of the deimatic display after the jump…

Continue reading

Chimps trump university students at memory task

Blogging on Peer-Reviewed ResearchWe humans aren’t used to having our intelligence challenged. Among the animal kingdom, we hold no records for speed, strength or size but our vaunted mental abilities are unparalleled. That is, until now. New research from Kyoto University shows that some chimps have a photographic memory that puts humans to shame.

Chimps trump university students at memory taskSana Inoue and Tetsuro Matsuzawa have found that young chimps have an ability to memorise details of complex images that is literally super-human. Boffin chimp Ayumu, outperformed university students in memory tasks where they had to rapidly memorise numbers scattered on a touchscreen and press them in numerical order.

This is the first time that an animal has outmatched humans in a mental skill. Recently, I’ve previously blogged about animals that show abilities once considered to be uniquely human, including jays that can plan for the future, rats that know how much they know, cultured chimps, tool-combining crows, and discriminating elephants.

But in all these cases, the animals merely showed that they could do similar types of mental feats to us. They never challenging our abilities in terms of complexity or scale. Simply put, a crow may be able to combine tools together, but it’s never going to be able to engineer a computer.

Continue reading

Envious capuchin monkeys react badly to raw deals

Blogging on Peer-Reviewed ResearchIn my last post, I wrote about two studies which showed that even bacteria cooperate towards a common goal and can be infiltrated by cheating slackers. In one of the studies, cheaters were eventually weeded out through natural selection because their rise to prominence created such havoc for the group that each individual bacterium suffered.

Envious capuchin monkeys react badly to raw dealsIn this scenario, slacking wasn’t punished but merely reduced over time. But more complex creatures, like humans, have the capacity to actually recognise unfairness and punish it directly. It turns out that we’re very keen on doing that; so strong is our innate sense of justice that we’ll often punish cheaters at our own expense.

Two years ago, Sarah Brosnan and Frans de Waal at the Yerkes National Primate Research Center found that brown capuchin monkeys also react badly to receiving raw deals. Forget bananas – capuchins love the taste of grapes and far prefer them over cucumber. If monkeys were rewarded for completing a task with cucumber while their peers were given succulent grapes, they were more likely to shun both task and reward.

That suggested that the ability to compare own efforts and rewards with those of our peers evolved much earlier in our history than we previously thought. Of course, animal behaviour researchers always need to be careful that they’re not reading too much into the actions of the animals they study.

Continue reading

Elephants smell the difference between human ethnic groups

It’s tempting to think that elephants have their own PR agency. Just last week, their mighty reputation was damaged by the revelation that they are scared away by bees but they have bounced back with a new study that cements their standing among the most intelligent of animals.

A wary elephant catches the scent of MassaiLucy Bates and colleagues from the University of St Andrews have found that African elephants (Loxodonta africana) can tell the difference between different human ethnic groups by smell alone. They also react appropriately to the level of threat they pose.

The Massai, for example, are a group of cattle-herders, whose young men sometimes prove themselves by spearing elephants. Clearly, it would pay to be able to sort out these humans from those who post little threat, like the Kamba.

Continue reading

Clever New Caledonian crows use one tool to acquire another

You don’t have to be particularly intelligent to use tools – many animals do so, including some insects. But it takes a uniquely intelligent animal to be able to combine different tools to solve a problem. We can do it, the great apes can do it, and now the New Caledonian crow joins our exclusive club.

New Caledonian crows are very advanced tool users.Animals can use tools using little more than pre-programmed behaviour patterns that require little intelligence. But combining tools, or using one tool on another (a metatool, if you will), is a different matter entirely – that takes reasoning.

This type of intelligence has been the engine of human innovation. It allowed us to use simple tools to make advanced ones, or to combine different tools into increasingly complex machines.

The majority of animals lack the ability to manipulate tools in this way and in primates, the line is drawn at the great apes – they can (mostly) do it, but monkeys struggle. So it may come as a surprise that a humble bird has now been found to use metatools to the same standard as our ape cousins – the New Caledonian crow.

Continue reading

Simple sponges provide clues to origin of nervous system

The possible origins of the nervous system have been found in the simple sponge, an animal with no nervous system of its own. Sponges carry the genetic components of synapses, which may have been co-opted by evolution as a starting point for proper nerve cells

Sponges are the most primitive of all animals. They are immobile, and live by filtering detritus from the water. They have no brains or, for that matter, any organs, tissues or nervous system of any sort. If you were looking for the evolutionary origins of animal intelligence, you couldn’t really pick a less likely subject to study.

Over time, evolution co-opted the early PSD of the sponge and used it to craft true nervous systems.So it was with great surprise that Onur Sakarya from the University of California, Santa Barbara found that sponges carry the beginnings of a nervous system.

With no neurons to speak of, these animals still have the genetic components of synapses, one of the most crucial parts of the nervous system. And their versions share startling similarities with those of humans.

Synapses (and proto-synapses)

Synapses are junctions between two nerve cells that are allow the cells to pass on signals to each other. Signals are carried by molecules that cross the synaptic gap called neurotransmitters. When they reach the receiving cell, they come across an elaborate tangle of proteins called the post-synaptic density (PSD; labelled in red below). The PSD processes the neurotransmitters, among many other important roles, and allows the receiving cell to respond appropriately to the nervous signal

Sakarya searched for equivalents of the human PSD proteins in the genomes of other animals. For a start, he found an almost complete set in the starlet sea anemone (Nematostella vectensis). The anemone (like its cousins, the jellyfish) is one of the Cnidarians, a group of animals that have the most rudimentary of nervous systems. Finding PSD genes in them is surprising but reasonable.

The synapse relays signals from one cell to another.But Sakarya was really surprised when he found the vast majority of the PSD assemblage in the sponge Amphimedon queenslandica, an animal that doesn’t even have a nervous system! The sponge’s PSD proteins bore remarkable resemblances to those of humans and other animals, and were built of similar arrangements of domains.

One in particular, the PDZ domain, allows PSD proteins to recognise one another and assemble correctly. When Sakarya compared the structures of the human and sponge PDZ domains, he found that at the atomic level, the parts they used to interact with other proteins were almost 90% identical. So not only does the sponge have the full set of PSD parts, it can assemble them into a fully-functioning whole.

Pre-adapted

So what is the PSD, part of the nervous system, doing in an animal without one? Sakarya believes that the PSD is an example of exaptation, a process where evolution co-opts an existing structure for another purpose. Bird feathers are a good example of this – they evolved in small dinosaurs to help them regulate their body temperature, and were only later used for flight.

Exaptation can explain how complex, integrated structures like the nervous system can evolve. Rather than building the whole thing from scratch, evolution took ‘off-the-shelf’ components, like the PSD, and put them together in exciting new ways.

Sponges are the simplest of animals but even they have genetic components of synapsesIn the same way, the PSD of sponges is switched on in a type of cell called the ‘flask cell’. Flask cells are only found in sponge larvae, which, unlike the adults, are free-swimming. These cells could help the larvae to sense their environment, and could well have been a starting point for the evolution of neurons.

Sakarya cautions that there could be another explanation. Sponges could be degenerate relics of a more advanced branch of animals, that stripped away their complexity in favour of life in the (very) slow lane. In this scenario, the flask cells are evolutionary remnants of neurons proper.

Nonetheless, under both scenarios, these findings strongly suggest that the common ancestor of all living animals already has an early working version of the PSD. This practically pre-adapted it for the evolution of nervous systems. With minimal additional evolutionary steps, this early scaffold could have been transformed into the functional synapses that drive our thoughts today. The ancestor was pre-adapted to a future with neurons.

It’s worth noting that this discovery was only made possible because the genome of Amphimedon has been fully sequenced. In an age where genome sequencing could start to be taken for granted, this drives home the importance of sequencing a wide variety of living things that represent crucial junctures in evolution.

Reference: Sakarya, Armstrong, Adamska, Adamski, Wang, Tidor, Degnan, Oakley & Kosik. 2007. A post-synaptic scaffold at the origin of the animal kingdom. PLOS One 6, e506: 1-7.

Technorati Tags: , , , , , , , , , , , ,

Related stories about evolution:
Of flowers and pollinators – a case study in punctuated evolution
Natural selection does a handbrake turn – quick evolution at work
Salamander robot walks, swims and sheds light on evolutionary step from sea to land
Human cone cell lets mice see in new colours
Living optic fibres bypass the retina’s back-to-front structure

Related stories about nervous systems:
Maternal hormone shuts down babies’ brain cells during birth
No new brain cells for you – settling the neurogenesis debate
Bats create spatial memories without making new brain cells

Cultured chimps pass on new traditions between groups

Chimpanzee groups have their own cultural traditions. Now, scientists have shown that chimp groups can transmit new behaviours to each other, by seeding new behaviours into a group and watching them spread.

For humans, our culture is a massive part of our identity, from the way we dress, speak and cook, to the social norms that govern how we interact with our peers. Our culture stems from our ability to pick up new behaviours through imitation, and we are so innately good at this that we often take it for granted.

Chimpanzee groups can learn new traditions from each other.We now know that chimpanzees have a similar ability, and like us, different groups have their own distinct cultures and traditions.

Now, Andrew Whiten from the University of St Andrews has published the first evidence that groups of chimpanzees can pick up new traditions from each other. In an experimental game of Chinese whispers, he seeded new behaviours in one group and saw that they readily spread to others.

Chimp cultures

Many animals have their own cultural traditions. Songbirds, for example, copy their parents’ melodies, and small variations lead to groups with different dialects. But chimpanzees have by far the richest cultures so far observed.

These scope of their culture first came to light in 1999, when Whiten, together with Jane Goodall and others, carefully documented at least 39 cultural behaviours among wild chimpanzees. Many of these were a matter of course in some populations, but completely absent in others.

Some groups use sticks to extract honey, others use them to retrieve marrow from bones, and yet others use them to fish for ants. Some get attention by rapping their knuckles on a branch, while others noisily rip leaves between their teeth. Some groups even have a rain dance.

Whiten has previously published three studies which demonstrated different sides of chimp cultural transmission. The first showed that trained individuals can spread seeded behaviours within a group. The second showed that cultures trickle through the generations as parents teach their children new behaviours. And the third showed that arbitrary conventions such as gestures and displays can spread as easily as skills involving tool use.

Now, together with an international team of researchers from the University of Texas and Yerkes National Primate Research Center, including primate expert Frans de Waal, Whiten has produced the first experimental evidence that cultural transmission can happen between different groups.

Seeding behaviours in groups

Whiten worked with six groups of captive chimps, each consisting of 8-11 individuals. They lived in large but separate enclosures arranged in two rows of three and each group could observe its neighbours, but not interact with them.

Whiten trained one chimp from groups one and four to solve two difficult tasks – the ‘probe task’ and the ‘turn-ip’ task – in order to get some food hidden inside a box. Each chimp was taught to use a different technique.

The probe taskIn the probe task, the chimp could move a lever at the top of the box to open a hatch, and use a stick to impale the food (A). Alternatively, it could use another lever at the side to lift an opening, giving it enough room to manoeuvre a stick inside and push the food out (B).

The turn-ip taskIn the turn-ip task (C), food items were dropped down a pipe, where they were blocked by a disc. The disc had a hole in it, that would allow the food to fall through when it was properly aligned. The chimps could turn the disc either by rotating an exposed edge or using a ratchet. Once the food dropped through, the chimps could get at it by pressing or sliding one of two different handles.

Group transmission

Once the student chimps had mastered their new methods, they were returned to their respective compounds and the whole group was allowed to try its hand at the tasks. Before the training, none of the chimps managed to successfully get at the food. But after just one chimp was taught the technique, most of the others in the group quickly picked it up.

The boxes were then moved to a different position, where chimps from the second pair of groups could watch chimps from the first pair solving the task. After a time, it was moved to another position where the third pair of groups could watch the second one.

Whiten found that the techniques were accurately and quickly transmitted between the different chimpanzee groups. His experiment clearly shows that chimps have an immense capacity for learning new behaviours from their peers. They do this accurately and different groups can acquire and maintain several varied cultural traditions.

Different chimpanzee groups have distinct cultural traditions.In light of this evidence, the regional behaviour patterns seen in chimp groups across Africa are, without a doubt, the result of cultural transmission. In the wild, rival groups are often hostile towards each other and it is unlikely that chimps sit down in jungle conferences to share new ideas. But females do move between groups and Whiten believes that they carry new cultural traditions with them.

How exactly the new behaviours spread is still a matter for debate. Some scientists have suggested that the chimps learn by ‘emulation’, meaning that they focus on the results of actions rather than the actions themselves. But other studies found that chimps don’t respond to ‘ghost’ lessons, where task machinery is operated by remote and not by another chimp.

The most likely explanation is that chimps imitate the actions of other chimps and are very good at learning from each other. In all likelihood, the common ancestor that we share with chimps had the same ability, and also had strong cultural streams running through its populations.


Find out more: If you’re interested in chimp intelligence and evolution, have a look at some of my previous posts on chimp gestures and the evolution of language, the chimp Stone Age and the evolution of tool use, and their use of tools for hunting.

Reference: Whiten, Spiteri, Horner, Bonnie, Lambeth, Schapiro & de Waal. 2007. Transmission of multiple traditions within and between chimpanzee groups. Current Biology 17: 1-6.

Images: Image of experimental apparatus taken from Cell Press.

Technorati Tags: , , , , , , ,

Monkeys (and their neurons) are calculating statisticians

Using a simple psychological test, scientists have found that monkeys can use simple statistical calculations to make decisions. They even managed to catch individual neurons in the act of computing.

Say the word ‘statistician’ and most people might think of an intelligent but reclusive person, probably working in a darkened room and almost certainly wearing glasses. But a new study shows that a monkey in front of a monitor can make a reasonably good statistician too.

Rhesus macaques can compute statistics in a simple psychological task.Tianming Yang and Michael Shadlen from the University of Washington found that rhesus macaques can perform simple statistical calculations, and even watched their neurons doing it.

Psychologists often train animals to learn simple tasks, where the right choice earns them a reward and the wrong one leaves them empty-handed or punished. But real life, of course, is not like that.

Mostly, there are risks and probabilities in lieu of guarantees or right answers. Animals must weigh up the available information, often from multiple sources, and decide on the course of action most likely to work out in their favour.

A simple psychological test

Yang and Shadlen tested this decision-making ability in two rhesus macaques using a variation of the well-known weather prediction task used to test human volunteers. In the human version, people are shown a series of cards that represent various probabilities of good or bad weather. After some training, they are shown combinations and asked to predict the likely weather from these.

The monkeys had a slightly simpler task – they had to look at either a green or a red target. If they picked the right one (which changed from trial to trial), they were rewarded with a tasty drink. To help the monkeys choose, Yang and Shadlen showed them a series of shapes that represented the probability that the rewarding target was red or green.

For example, a square strongly indicated that the red target was the rewarding one, while a triangle strongly favoured the green one, and an hourglass only slightly favoured the green. The monkeys were shown four shapes out of a possible ten, and to get the right answer, they had to add up the probabilities indicated by these shapes.

Monkey see, monkey decide

Yang and Shadlen saw individual neurons performing computations.And that is exactly what they did. They learned to base their decisions on the combined probabilities of the four shapes, and chose the appropriate target. It did, however, take them a while to learn (or two months of training with over 130,000 trials to be exact). Any statisticians reading this don’t need to fear about being replaced by monkeys any time soon.

They weighed up the strength of the evidence too. When the shapes strongly suggested one colour, the monkeys almost always went with that colour. When the summed probability lay between the two extremes, they chose either target but still favoured the one indicated by the shapes.

With 715 different combinations of shapes, the experiment’s design makes it highly unlikely that the monkeys simply memorised the ‘answers’ for different mixes. And because the shapes only dealt in probabilities, it was still possible to choose the wrong target, even if the monkey strictly adhered to the shapes’ advice. They were clearly reasoning with probabilities, and in pretty subtle ways.

Calculating neurons

For their next trick, Yang and Shadlen visualised this reasoning directly by looking at 64 neurons in the monkeys’ lateral intraparietal area (LIP). This part of the brain is responsible for several higher functions like mathematical skills. Other studies have found that the LIP collects data from the visual cortex, and helps to process what the monkey sees.

Monkeys can calculate the sums of different probabilities.When the monkeys saw a shape, the activity of their LIP neurons was proportional to the probability indicated by that shape. As the four shapes were shown in sequence, the neurons altered their rate of firing to account for the new information. As the evidence was building up, the monkeys were busy doing sums in their heads. Yang and Shadlen were seeing arithmetic in action.

Of course, monkeys are living things and not fuzzy calculators, and they were not equally good at statistical reasoning. One was clearly better than the other, and Yang and Shadlen put this down to differences in their neurons.

Each neuron varies slightly in its typical firing rate, and summed together, these variations can lead to biases in how the monkeys deal with calculations. This explains why the monkeys sometimes did different things when shown the same combination of shapes.

Their confusion was particularly apparent when the shapes gave no strong inclination to pick one target or another. We can certainly relate to that – after all, it’s certainly harder to make a decision, when neither option seems particularly better than the other.

Yang and Shadlen believe that human brains use similar methods to make decisions. Cues about probabilities are funnelled into the brain’s control centres (like the LIP), which act like calculators powered by the firing of neurons.

Reference: Yang & Shadlen. 2007. Probabilistic reasoning by neurons. Nature (doi:10.1038/nature05852)

Technorati Tags: , , , , , , ,
Digg this Del.icio.us Reddit Google Bookmarks Stumbleupon

Related posts on neuroscience:
Bats create spatial memories without making new brain cells
Simple sponges provide clues to origin of nervous system
Maternal hormone shuts down babies’ brain cells during birth
No new brain cells for you – settling the neurogenesis debate
Drugs and stimulating environments reverse memory loss in brain-damaged mice


The evolution of animal personalities – they’re a fact of life

Animals have distinct personalities and temperaments, but why would evolution favour these over more flexible and adaptible mindsets? New game theory models show that animal personalities are a natural progression from the choices they make over hwo to live and reproduce.

Any pet owner, wildlife photographer or zookeeper will tell you that animals have distinct personalities. Some are aggressive, others are docile; some are bold, others are timid.

An animal’s reproductive decisions can determine if it is a hawk…In some circles, ascribing personalities to animals is still a cardinal sin of biology and warrants being branded with a scarlet A (for anthropomorphism). Nonetheless, scientists have consistently found evidence of personality traits in species as closely related to us as chimpanzees, and as distant as squid, ants and spiders.

These traits may exist, but they pose an evolutionary puzzle because consistent behaviour is not always a good thing. The consistently bold animal could well become a meal if it stands up to the wrong predator, or seriously injured if it confronts a stronger rival. The ideal animal is a flexible one that can continuously adjust its behaviour in the face of new situations.

And yet, not only do personality types exist but certain traits are related across the entire animal kingdom. Aggression and boldness toward predators are part of a general ‘risk-taking’ personality that scientists have found in fish, birds and mammals.

Life decisions affect personality

Max Wolf and colleagues from The University of Groningen, Netherlands, have found a way to explain this discrepancy. Using game theory models, they have shown that personalities arise because of the way animals live their lives and decide when to reproduce.

For an animal, success is measured achieved through living long enough to reproduce, and individuals constantly gamble their current success against their future one. They could reproduce now, or defer it to a later time when resources are more abundant.

The crux of Wolf’s theory is that those with a stable, assured future have more to lose by gambling, and are likely to be more risk-averse. Those with little to lose can afford to live fast and die young.

A model personality

Wolf tested this idea by using a mathematical model to simulate these choices and their consequences. The protagonist of his model is a fictional animal that lives in an area with many territories, some rich in food and others lacking it.

The animal can choose how thoroughly it wants to explore its habitat. If it is adventurous, it could find a lush and bountiful territory, but it will have less energy to raise young, and must postpone this to the following year. That may not be so bad – its new home will give it a ripe, long life and it will have many opportunities for breeding.

or a dove.He found that simulated animals picked one of two stable strategies. Some decided to explore thoroughly and hope for greater reproductive success in the future. Others decided to stay put, have young now and make the best of things, poor resources be damned.

Wolf then modelled how these two groups would react to decisions about risk, in a classic hawk-dove experiment. When faced with a predator or a rival, the animal could run away or back down (dove), which takes time and could lose it feeding opportunities or its territory. If it stood and fight (hawk), the likelihood of death or injury was greater but so were the rewards.

Sure enough, the explorers who were investing on future success, consistently evolved to be docile, timid and risk-averse, while those who reproduced immediately consistently became bold and aggressive. These patterns held up under a wide range of simulated conditions. Over time, they gave rise to stable individual differences and behaviour traits that were consistently linked with each other, the foundations of personality.

Objections

In New Scientist’s coverage of this story, Judy Stamp from the University of California, Davis, criticises Wolf’s work for only explaining extremes of personality. Obviously, animals are not always black hawks or white doves, but many shades in-between.

But Wolf’s study answers this too. In the most advanced version of his model, he accounted for the fact that behaviours are governed by many heritable genes. This generated a much more realistic and continuous spectrum of personalities. Even with this more plausible model, the same principle applied – the more an animal had to lose, the fewer risks it was prepared to take.

Wolf is now keen to see his theory tested in the field. He suggests that many other behaviour traits could be linked to aggression or boldness. Individuals that invest heavily in the present may be more likely to guard nests, care for their young or woo mates with conspicuous and costly displays.

 

Reference: Wolf, van Doorn, Leimar & Weissing. 2007. Life-history trade-offs favour the evolution of animal personalities. Nature 447: 581-584.

Technorati Tags: , , , , ,
Digg this Del.icio.us Reddit Google Bookmarks Stumbleupon

Chimps show that actions spoke louder than words in language evolution

Chimpanzees and bonobos use gestures more flexibly and adaptively than other forms of communication. These gestures, and not words, may have been the starting point for the evolution of human language.

Hollywood cavemen typically communicate with grunts and snorts, reflecting a belief that human language originated like this and slowly evolved into the rich and sophisticated tongues we use today.

Chimps and bonobos have thier own vocabularies of gestures.But researchers from Emory University, Atlanta have found evidence that the origins of human language lie in gestures, not words. If they are right, then high-fives, V-signs and thumbs-ups could more closely reflect the beginnings of human language than conversations do.

The importance of gestures

All primates can communicate with each other through facial expressions, body postures and calls, but humans and apes are unique in their use of gestures. These go beyond simple postures or walking patterns – they are movements of the hand, limbs and feet, specifically directed at another individual.

We think of language as mainly spoken or written but gestures play an enormous, often overlooked role. After all, isn’t a speaker who waves their hands animatedly more engaging than one who stands motionless behind a podium?

And they are such an intrinsic part of the way we communicate that a blind speaker will make gestures normally to a blind audience, and babies use gestures long before they learn their first words.

To understand the role of gestures in the origins of human language, Amy PIllock and Frans de Wall decided to see how they are used by our closest relatives – the chimpanzee and the bonobo (the pygmy chimpanzee

How chimps and bonobos communicate

Bonobos may communicate with more sophistication than chimps.For one and a half years, they watched 34 chimps belonging to two separate groups, and 13 bonobos (right), again from two groups. Through painstaking analyses, they identified 31 different gestures and 18 different facial and vocal expressions.

The facial and vocal signals were very consistent between the two species. They were used in the same ways, and in very specific contexts, such as play, grooming or fights. For example, both chimps and bonobos scream when threatened or attacked, a gesture that is shared by many other primates.

This suggests that these signals are an evolutionarily ancient means of communication, and were probably used by the common ancestor that we shared with both chimps and bonobos.

Gestures on the other hand, were altogether more flexible. They were used in all sorts of situations and carried very different meanings depending on the context.

When a chimp stretches out an open hand (below), it can be asking for support during a fight or for a share of food during a meal. In the same way, a person raising his hand could be greeting a friend, surrendering, or answering a question in class.

Chimps use gestures more flexibly than other forms of communication.Chimps and bonobos also differed considerably in their vocabulary of gestures, with each species having its own ‘gesture culture’. The two groups of bonobos even used slightly different sets of gestures to each other.

Gestures and the origins of human language

Pillock and de Waal believe that these studies strongly position gestures as the starting point for human language evolution. In chimps and bonobos, gestures are more adaptable and flexible than calls or facial expressions.

They are relatively disconnected from specific emotions and can be more easily controlled. Facial expressions can give away big clues about a person’s emotional state in all but the best poker faces, but gestures can be used subtly or even deceptively.

Their adaptability means that gestures can be used in many ways and are free to pick up a variety of symbolic meanings. They pick up cultural differences easily, as shown by the very different ‘gesture vocabularies’ used by chimps and bonobos.

Pillock’s and de Waal’s experiments also support other studies which suggest that the language of bonobos is more sophisticated than that of chimps. For a start, their gestures show greater cultural variations.

While bonobos combine them with calls and facial expressions less frequently than chimps do, but they also respond much more strongly to these joint signals. Pillock and de Waal believe that the bonobos could be using these multiple signals more deliberately than chimps to subtly change the meaning of a facial expression or vice versa.

The chimps on the other hand, may just be using joint signals to say the same message more loudly. Among the great apes, the bonobos may deserve the silver medal for their language skills.

Reference: Pollick & de Waal. 2007. Ape gestures and language evolution. PNAS 104: 8184-8189

Technorati Tags: , , , , , ,

Rats check their own knowledge before taking a test

Scientists from the University of Georgia have found evidence of a surprising level of intelligence in rats. Like a human student, the furry creatures can reflect on their own knowledge to decide if they want to take a test.

Animals often show a keen intelligence and many species, from octopuses to crows, can perform problem-solving tasks. But humans are thought to go one step further.

Students can predict how well they do in a test before they take it - can rats do the same?We can reflect on our own thoughts and we have knowledge about our knowledge. We can not only solve problems, but we know in advance if we can (or are likely to).

In technical terms, this ability is known as ‘metacognition’. It’s what students do when they predict how well they will do in an exam when they see the questions. It’s what builders do when they work out how long a job will take them to finish.

But can animals do the same? Finding out is obviously difficult. No animal is going to tell us what it is thinking. To work that out, we need clever experiments.

Allison Foote and Jonathon Crystal searched for metacognition in rats by giving them a test that they could decline. If they passed, they received a big reward and if they failed, they got nothing.

But the cunning part of their study lay in giving the rats a small reward if they declined the test. If they knew they were unlikely to pass the test, they’d be better off bowing out. In this experiment, a measured attitude beats a gung-ho one.

The test asked the rat to classify a burst of noise as ‘short’ or ‘long’. Noises that were very short or very long were easy to classify, but those of intermediate length were more challenging.

Rats show metacognition just like humans.After hearing the noise, the rat was offered two holes through which it could stick its nose – one for accepting the test and one for declining it. If it was game, it was then given two levers, one for a short noise, and one for a long one.

After some initial training, the results were clear. The rats were much more likely to opt out of the test if the noise they heard was challenging. And when they accepted the test, they were much more likely to answer correctly than in trials where they were forced to take it.

To Foote and Crystal, these results show that the rats knew when they didn’t know the answer. And armed with this knowledge, they could make adaptive choices about their future.

I love experiments like this. They are elegant, clever, and ever so slightly like talking to animals directly.

While we’re never going to have Doolittle-style conversations with rats, looking inside their heads (experimentally not literally) is the next best thing. Scientists like Foote and Crystal are like lab-coated rat whisperers.

 

 

Reference: Foote & Crystal. 2007. Metacognition in the rat. Curr Biol. 17: 551-555.

Eavesdropping songbirds get predator intel from overheard calls

Animals gain valuable information on incoming predators by listening to the alarm calls of the communication of other species. New experiments with chickadees suggest that both alarm calls and the understanding of them are more complex than we had thought.

Humans are a funny lot. While we seem to be relentless voyeurs, we generally frown on eavesdropping as an invasion of privacy. But in the animal world, eavesdropping can be a matter of life or death.

The black-capped chickadee encodes information on predator size in its call.Animals rarely communicate in isolation. Often it pays for one species to monitor the dialogues of others, particularly when predator warnings are involved. Small animals in particular do well to pay attention to the alarms of other species, as they are often preyed upon by the same larger hunters.

Even very unrelated species can listen in and understand each other’s signals. Vervet monkeys respond to the alarm calls of superb starlings, while mongooses are well-versed in hornbill calls.

Alarm calls aren’t just a simple matter of shouting “Look out!”, and many species have different calls for different predators. But one of the most sophisticated alarm systems so far discovered is used by a small, unassuming bird called the black-capped chickadee

The chickadee acts as an inadvertent sentry for a multitude of bird species. Its name comes from its distinctive “chick-a-dee” alarm call, made in response to a perched bird of prey or a land predator.

The black-capped chickadee has one of the most complex alarm calls so far discovered.When this call sounds out, anywhere between 24 and 50 species of bird marshall together and mob the predator, robbing it of the element of surprise and harassing it from the area.

The chick-a-dee call is not a blunt warning, but a sophisticated piece of communication. By varying the acoustics of the call, the chickadee can warn others about not only the type of predator, but also its potential threat and size.

Smaller raptors, with their superior maneuverability, pose a greater danger to small birds and must be dealt with more carefully. When these hunters are near, the birds warn of their presence by shortening the gap between chick and dee, and add extra dees to the end.

Now, Christopher Templeton and Erick Greene from the University of Washington have found that other birds have learned to appreciate the subtle differences in the chickadee’s calls.

The red-breasted nuthatch has learned to understand the subtle variations in chickadee alarm calls.They recorded two variants of the chick-a-dee call, by exposing the birds to two species of owl, one large and one small, in controlled encounters. They then played the calls back to red-breasted nuthatches – common flock-mates of chickadees – from a speaker hidden in a tree. As predicted, the nuthatches mobbed the speaker in response to both calls.

But on closer inspection, they were clearly picking up on the greater threat suggested by the subtly different small-predator call. When that was played, they mobbed more frequently and for longer, approached the speaker more than twice as closely, showed more wing-flick displays (a sign of agitation), and were themselves more likely to call.

Conserving their energies for only the most dangerous predators could bring great benefits to the nuthatches, especially in winter, when they are most likely to be found in the company of chickadees. Their food sources are scarce, and keeping warm saps valuable energy. Understanding the subtle differences in the chickadee dialect could help them save their energy for the times of greatest need.

Templeton and Greene’s study shows that animals can pick up a surprisingly complex picture of their environment by listening in on other conversations.

 

Reference: Templeton & Greene. 2007. Nuthatches eavesdrop on variations in heterotrophic chickadee mobbing alarm calls. PNAS 104: 5479-5482.

Image: Nuthatch photo by Alan D Wilson.

Technorati Tags: , , , , , ,