Chimps trump university students at memory task

Blogging on Peer-Reviewed ResearchWe humans aren’t used to having our intelligence challenged. Among the animal kingdom, we hold no records for speed, strength or size but our vaunted mental abilities are unparalleled. That is, until now. New research from Kyoto University shows that some chimps have a photographic memory that puts humans to shame.

Chimps trump university students at memory taskSana Inoue and Tetsuro Matsuzawa have found that young chimps have an ability to memorise details of complex images that is literally super-human. Boffin chimp Ayumu, outperformed university students in memory tasks where they had to rapidly memorise numbers scattered on a touchscreen and press them in numerical order.

This is the first time that an animal has outmatched humans in a mental skill. Recently, I’ve previously blogged about animals that show abilities once considered to be uniquely human, including jays that can plan for the future, rats that know how much they know, cultured chimps, tool-combining crows, and discriminating elephants.

But in all these cases, the animals merely showed that they could do similar types of mental feats to us. They never challenging our abilities in terms of complexity or scale. Simply put, a crow may be able to combine tools together, but it’s never going to be able to engineer a computer.

Continue reading

The social life of our extinct relatives

Blogging on Peer-Reviewed ResearchOne of our extinct evolutionary cousins, Paranthropus robustus, may have walked like a man but it socialised like a gorilla. Using only fossils, UCL scientists have found that P.robustus males were much larger than females, competed fiercely for mates and led risky lives under heavy threat from predators.

I wrote an article about the cool new finding for Nature Network. Here’s the opening and you can read the full article here.

A single fossil can tell you about the shape, diet and movements of an extinct animal but with enough specimens, you can reconstruct their social lives too.

Charles Lockwood of University College London used an unusually large collection of fossils to peer back in time at the social structures of one of our closest extinct relatives, Paranthropus robustus, which inhabited southern Africa between 1.2 million and 2 million years ago.

Envious capuchin monkeys react badly to raw deals

Blogging on Peer-Reviewed ResearchIn my last post, I wrote about two studies which showed that even bacteria cooperate towards a common goal and can be infiltrated by cheating slackers. In one of the studies, cheaters were eventually weeded out through natural selection because their rise to prominence created such havoc for the group that each individual bacterium suffered.

Envious capuchin monkeys react badly to raw dealsIn this scenario, slacking wasn’t punished but merely reduced over time. But more complex creatures, like humans, have the capacity to actually recognise unfairness and punish it directly. It turns out that we’re very keen on doing that; so strong is our innate sense of justice that we’ll often punish cheaters at our own expense.

Two years ago, Sarah Brosnan and Frans de Waal at the Yerkes National Primate Research Center found that brown capuchin monkeys also react badly to receiving raw deals. Forget bananas – capuchins love the taste of grapes and far prefer them over cucumber. If monkeys were rewarded for completing a task with cucumber while their peers were given succulent grapes, they were more likely to shun both task and reward.

That suggested that the ability to compare own efforts and rewards with those of our peers evolved much earlier in our history than we previously thought. Of course, animal behaviour researchers always need to be careful that they’re not reading too much into the actions of the animals they study.

Continue reading

Resistance to an extinct virus makes us more vulnerable to HIV

Immunity to viral infections sounds like a good thing, but it can come at a price. Millions of years ago, we evolved resistance to a virus that plagued other primates. Today, that virus is extinct, but our resistance to it may be making us more vulnerable to the present threat of HIV.

Many extinct viruses are not completely gone. Some members of a group called retroviruses insinuated themselves into our DNA and became a part of our genetic code.

Our resistance to the ancient PtERV1 may explain our vulnerability to HIV.Indeed, a large proportion of the genomes of all primates consists of the embedded remnants of ancient viruses. Looking at these remnants is like genetic archaeology, and it can tell us about infections both past and present.

Viral hitchhikers

When retroviruses (such as HIV, right) infect a cell, they insert their own DNA into their host’s genome, using it as a base of operations. From there, the virus can pop out again and make new copies of itself, re-infect its host or move on to new cells.

If it manages to infect an egg or sperm cell, the virus could pass onto the next generation. Hidden inside the embryo’s DNA, it becomes replicated trillions of times over and ends up in every single one of the new individual’s cells.

These hitchhikers are called ‘endogenous retroviruses’. While they could pop out at any time, they quickly gain mutations in their DNA that knocks out their ability to infect. Unable to move on, they become as much a part of the host’s DNA as its own genes.

In 2005, a group of scientists led by Evan Eichler compared endogenous retroviruses in different primates and found startling differences. In particular, chimps and gorillas have over a hundred copies of the virus PtERV1 (or Pan troglodytes endogenous retrovirus in full). Our DNA has none at all, and this is one of the largest differences between our genome and that of chimps.

Our ancestors shared a similar geographical range to the ancestors of these apes, and would have encountered the same viruses, including PtERV1. And yet, we were spared from infection, while the apes were not. Why?

Protecting against an ancient virus

HIV daughter particles - retroviruses like HIV can integrate into a host’s DNAShari Kaiser and colleagues from the University of Washington and the Fred Hutchinson Cancer Research Center believed that the answer lies in a protein called TRIM5α that defends us from retroviruses. It latches onto the outer coat of incoming viruses, and tells other proteins to dismantle or destroy them.

Other primates have their own versions of TRIM5α that protect against a different range of viruses, and the protein has evolved dramatically in different primate lineages. Kaiser believed that our version of TRIM5α protected us from PtERV1, while that of other apes did not. To test her idea, all she had to do was to resurrect a dead virus.

Obviously, PtERV1 is long extinct, but its remnants exist inside the genomes of chimps. Kaiser compared dozens of these remnants and by identifying common elements, she worked out the ancestral sequence of the virus.

She created a small part of PtERV1 and fused it with bits of a modern virus, MLV, to create a fully-functioning hybrid. To nullify any potential for spread beyond the lab, she crippled the virus so that it could infect once and only once.

The reconstructed virus successfully infected mammal cells in a lab, but not when human TRIM5α was around. The guardian protein demolished the virus’s infectivity, reducing it by more than 100 times. As Kaiser predicted, our genomes are free of PtERV1 because TRIM5α killed it before it could reach our DNA.

Resist one virus, succumb to another

TRIM5a provides antiviral protection that seesaws between different virus species.But this protection carries a price – it makes us vulnerable to HIV. Over the course of primate evolution, humans made an important change in the amino acid sequence of TRIM5α that allowed the protein to fight off PtERV1. When Kaiser changed the protein back to its original form, she found that it gained the ability to fight off HIV, but lost its resistance to PtERV1.

In fact, Kaiser found that no primate species has a version of TRIM5α capable of fighting off both viruses at the same time. We are resistant to ptERV1 and vulnerable to HIV, but chimps, gorillas, baboons and rhesus macaques show the reverse strengths and weaknesses.

When it comes to retrovirus immunity, there is no win-win situation. Having defeated one enemy, we have unwittingly made ourselves more vulnerable to another.

Reference: Kaiser, Malik & Emerman. 2007. Restriction of an extinct retrovirus by the human TRIM5a antiviral protein. Science 316:1756 – 1758.

Technorati Tags: , , , , , , , ,

Related posts on viruses and virus evolution:
The upside of herpes – when one infection protects against another
Viruses evolve to be more infectious in a well-connected population
Round peg, square hole – why our bird flu drugs are a fluke

Related posts on new medical discoveries:
Drugs that work against each other could fight resistant germs
The secret of drug-resistant bubonic plague
Neutralising anthrax – moving closer to a cure

Inner ear size can predict a mammal’s agility

The semicircular canals of an animal’s inner ear controls its sense of balance. Their size can tell us whether an animal is slow and ponderous or fast and agile. They can even help us to reconstruct the behaviour of extinct species.

Studying the way an animal moves by looking at its ears might seem like a poorly thought-out strategy. After all, short of watching it directly, most biologists would choose to look at more obvious traits like tracks, or limb bones.

But while an animal’s limbs may drive it forward, its inner ear makes sure that it doesn’t immediately fall over. By controlling balance, it plays a key role in movement, and its relative size can tell us about how agile an animal is.

Organs of balanceA 3-D reconstruction of a baboon’s skull and its semicircular canals.

When we walk, the image that forms on our retinas changes quite considerably. But no matter how fast or erratically we move, our view of the world neither jerks nor judders. It’s all stable images and smooth transitions, and the inner ear plays a large role in that.

In the inner ear, three semicircular canals control our balance by acting like small gyroscopes. The canals are bony, fluid-filled tubes arranged at right angles to each other and send information to the brain about the body’s orientation.

When the body moves, so does the fluid and this sloshing is sensed by hairs in the canals and relayed to the brain. The muscles of the neck and eye tense reflexively in response to these signals, and these help to stabilise our view of the world.

In humans, the inner ear doesn’t really have to work too hard – we’re limited to moving on the ground, and not very quickly at that. It’s a whole different story for a fast and agile animal like a bat, twisting and turning in three-dimensional airspace while avoiding obstacles and predators.

Acrobatics vs. stealth

Fred Spoor from University College London and colleagues from around the world reasoned that these different movement styles must be reflected in the size of a species’ balance organs. There is some evidence for this already – the practically immobile sloths have small semicircular canals, while manoeuvrable birds have relatively large ones.

But these findings seem almost anecdotal compared to the massive amount of data that Spoor collected. His group looked at the canals of 91 different species of primates, representing all the major families.

Primates have a wide range of movement styles from the fast siamang (top) to the slow loris (bottom).The primates are an ideal group for this type of analysis – despite being closely related, they have a vast range of different movement styles.

Acrobatic gibbons swing through jungle canopies at high speed using ball-and-socket-jointed wrists (top). At the other end of the spectrum, the appropriately named slow loris is a ponderous and stealthy climber (bottom).

The group used a special CT scanner, a hundred times more sensitive than those used by hospitals, to build detailed 3-D reconstructions of the skull of each species, and the three canals inside. As well as the primates, they also looked at 119 other mammals, from mouse to elephant, and gave each one a score from one to six, based on how swift or agile they were.

Canal size predicts agility

As predicted, they found that the canals of agile animals with fast, jerky movements like tarsiers (image below, left) are larger for their body size and more strongly curved. Slower species like lorises have relatively small and less curved canals.

The semicircular canals of a tarsier (left) are relatively larger than those of the Palaeopropithecus (right).Spoor’s data suggests that the size of the semicircular canals are an important adaptation to give fast-moving animals greater stability.

It explains why some primates can gracefully race through dense treetops at speeds where humans, with out relatively smaller canals, would embarrassingly collide with a branch. Just look at this amazing video from the Life of Mammals, of various lemurs (and their predators) moving through the trees.

This method can also be used forensically, to recreate the movement styles of extinct mammals. To prove this principle, Spoor looked at the canals of several species of extinct lemur, and found that their canals gave important clues about their behaviour.

Of the species he looked at, Palaeopropithecus (image above, right) had by far the smallest canals for its size. Accordingly, palaeontologists believed it was the lemur equivalent of a sloth; its hands and feet are curved for hanging from branches, and its wrists and ankles have lost the flexibility needed for effective walking.

Reference: Spoor, Garland, Krovitz, Ryan, Silcox & Walker. 2007. The primate semicircular canal system and locomotion. PNAS doi/10.1073/pnas.0704250104

Technorati Tags: , , , , , , ,

Images: Top and bottom images from Alan Walker lab, Penn State, siamang by William H Calvin, loris by Sandilya Theuerkauf

Related stories on mammal evolution:

The evolution of animal personalities – they’re a fact of life
Orang-utan study suggests that upright walking may have started in the trees

Living optic fibres bypass the retina’s back-to-front structure

Death of dinosaurs did not lead to rise of modern mammals
Human cone cell lets mice see in new colours

Cultured chimps pass on new traditions between groups

Chimpanzee groups have their own cultural traditions. Now, scientists have shown that chimp groups can transmit new behaviours to each other, by seeding new behaviours into a group and watching them spread.

For humans, our culture is a massive part of our identity, from the way we dress, speak and cook, to the social norms that govern how we interact with our peers. Our culture stems from our ability to pick up new behaviours through imitation, and we are so innately good at this that we often take it for granted.

Chimpanzee groups can learn new traditions from each other.We now know that chimpanzees have a similar ability, and like us, different groups have their own distinct cultures and traditions.

Now, Andrew Whiten from the University of St Andrews has published the first evidence that groups of chimpanzees can pick up new traditions from each other. In an experimental game of Chinese whispers, he seeded new behaviours in one group and saw that they readily spread to others.

Chimp cultures

Many animals have their own cultural traditions. Songbirds, for example, copy their parents’ melodies, and small variations lead to groups with different dialects. But chimpanzees have by far the richest cultures so far observed.

These scope of their culture first came to light in 1999, when Whiten, together with Jane Goodall and others, carefully documented at least 39 cultural behaviours among wild chimpanzees. Many of these were a matter of course in some populations, but completely absent in others.

Some groups use sticks to extract honey, others use them to retrieve marrow from bones, and yet others use them to fish for ants. Some get attention by rapping their knuckles on a branch, while others noisily rip leaves between their teeth. Some groups even have a rain dance.

Whiten has previously published three studies which demonstrated different sides of chimp cultural transmission. The first showed that trained individuals can spread seeded behaviours within a group. The second showed that cultures trickle through the generations as parents teach their children new behaviours. And the third showed that arbitrary conventions such as gestures and displays can spread as easily as skills involving tool use.

Now, together with an international team of researchers from the University of Texas and Yerkes National Primate Research Center, including primate expert Frans de Waal, Whiten has produced the first experimental evidence that cultural transmission can happen between different groups.

Seeding behaviours in groups

Whiten worked with six groups of captive chimps, each consisting of 8-11 individuals. They lived in large but separate enclosures arranged in two rows of three and each group could observe its neighbours, but not interact with them.

Whiten trained one chimp from groups one and four to solve two difficult tasks – the ‘probe task’ and the ‘turn-ip’ task – in order to get some food hidden inside a box. Each chimp was taught to use a different technique.

The probe taskIn the probe task, the chimp could move a lever at the top of the box to open a hatch, and use a stick to impale the food (A). Alternatively, it could use another lever at the side to lift an opening, giving it enough room to manoeuvre a stick inside and push the food out (B).

The turn-ip taskIn the turn-ip task (C), food items were dropped down a pipe, where they were blocked by a disc. The disc had a hole in it, that would allow the food to fall through when it was properly aligned. The chimps could turn the disc either by rotating an exposed edge or using a ratchet. Once the food dropped through, the chimps could get at it by pressing or sliding one of two different handles.

Group transmission

Once the student chimps had mastered their new methods, they were returned to their respective compounds and the whole group was allowed to try its hand at the tasks. Before the training, none of the chimps managed to successfully get at the food. But after just one chimp was taught the technique, most of the others in the group quickly picked it up.

The boxes were then moved to a different position, where chimps from the second pair of groups could watch chimps from the first pair solving the task. After a time, it was moved to another position where the third pair of groups could watch the second one.

Whiten found that the techniques were accurately and quickly transmitted between the different chimpanzee groups. His experiment clearly shows that chimps have an immense capacity for learning new behaviours from their peers. They do this accurately and different groups can acquire and maintain several varied cultural traditions.

Different chimpanzee groups have distinct cultural traditions.In light of this evidence, the regional behaviour patterns seen in chimp groups across Africa are, without a doubt, the result of cultural transmission. In the wild, rival groups are often hostile towards each other and it is unlikely that chimps sit down in jungle conferences to share new ideas. But females do move between groups and Whiten believes that they carry new cultural traditions with them.

How exactly the new behaviours spread is still a matter for debate. Some scientists have suggested that the chimps learn by ‘emulation’, meaning that they focus on the results of actions rather than the actions themselves. But other studies found that chimps don’t respond to ‘ghost’ lessons, where task machinery is operated by remote and not by another chimp.

The most likely explanation is that chimps imitate the actions of other chimps and are very good at learning from each other. In all likelihood, the common ancestor that we share with chimps had the same ability, and also had strong cultural streams running through its populations.


Find out more: If you’re interested in chimp intelligence and evolution, have a look at some of my previous posts on chimp gestures and the evolution of language, the chimp Stone Age and the evolution of tool use, and their use of tools for hunting.

Reference: Whiten, Spiteri, Horner, Bonnie, Lambeth, Schapiro & de Waal. 2007. Transmission of multiple traditions within and between chimpanzee groups. Current Biology 17: 1-6.

Images: Image of experimental apparatus taken from Cell Press.

Technorati Tags: , , , , , , ,

Monkeys (and their neurons) are calculating statisticians

Using a simple psychological test, scientists have found that monkeys can use simple statistical calculations to make decisions. They even managed to catch individual neurons in the act of computing.

Say the word ‘statistician’ and most people might think of an intelligent but reclusive person, probably working in a darkened room and almost certainly wearing glasses. But a new study shows that a monkey in front of a monitor can make a reasonably good statistician too.

Rhesus macaques can compute statistics in a simple psychological task.Tianming Yang and Michael Shadlen from the University of Washington found that rhesus macaques can perform simple statistical calculations, and even watched their neurons doing it.

Psychologists often train animals to learn simple tasks, where the right choice earns them a reward and the wrong one leaves them empty-handed or punished. But real life, of course, is not like that.

Mostly, there are risks and probabilities in lieu of guarantees or right answers. Animals must weigh up the available information, often from multiple sources, and decide on the course of action most likely to work out in their favour.

A simple psychological test

Yang and Shadlen tested this decision-making ability in two rhesus macaques using a variation of the well-known weather prediction task used to test human volunteers. In the human version, people are shown a series of cards that represent various probabilities of good or bad weather. After some training, they are shown combinations and asked to predict the likely weather from these.

The monkeys had a slightly simpler task – they had to look at either a green or a red target. If they picked the right one (which changed from trial to trial), they were rewarded with a tasty drink. To help the monkeys choose, Yang and Shadlen showed them a series of shapes that represented the probability that the rewarding target was red or green.

For example, a square strongly indicated that the red target was the rewarding one, while a triangle strongly favoured the green one, and an hourglass only slightly favoured the green. The monkeys were shown four shapes out of a possible ten, and to get the right answer, they had to add up the probabilities indicated by these shapes.

Monkey see, monkey decide

Yang and Shadlen saw individual neurons performing computations.And that is exactly what they did. They learned to base their decisions on the combined probabilities of the four shapes, and chose the appropriate target. It did, however, take them a while to learn (or two months of training with over 130,000 trials to be exact). Any statisticians reading this don’t need to fear about being replaced by monkeys any time soon.

They weighed up the strength of the evidence too. When the shapes strongly suggested one colour, the monkeys almost always went with that colour. When the summed probability lay between the two extremes, they chose either target but still favoured the one indicated by the shapes.

With 715 different combinations of shapes, the experiment’s design makes it highly unlikely that the monkeys simply memorised the ‘answers’ for different mixes. And because the shapes only dealt in probabilities, it was still possible to choose the wrong target, even if the monkey strictly adhered to the shapes’ advice. They were clearly reasoning with probabilities, and in pretty subtle ways.

Calculating neurons

For their next trick, Yang and Shadlen visualised this reasoning directly by looking at 64 neurons in the monkeys’ lateral intraparietal area (LIP). This part of the brain is responsible for several higher functions like mathematical skills. Other studies have found that the LIP collects data from the visual cortex, and helps to process what the monkey sees.

Monkeys can calculate the sums of different probabilities.When the monkeys saw a shape, the activity of their LIP neurons was proportional to the probability indicated by that shape. As the four shapes were shown in sequence, the neurons altered their rate of firing to account for the new information. As the evidence was building up, the monkeys were busy doing sums in their heads. Yang and Shadlen were seeing arithmetic in action.

Of course, monkeys are living things and not fuzzy calculators, and they were not equally good at statistical reasoning. One was clearly better than the other, and Yang and Shadlen put this down to differences in their neurons.

Each neuron varies slightly in its typical firing rate, and summed together, these variations can lead to biases in how the monkeys deal with calculations. This explains why the monkeys sometimes did different things when shown the same combination of shapes.

Their confusion was particularly apparent when the shapes gave no strong inclination to pick one target or another. We can certainly relate to that – after all, it’s certainly harder to make a decision, when neither option seems particularly better than the other.

Yang and Shadlen believe that human brains use similar methods to make decisions. Cues about probabilities are funnelled into the brain’s control centres (like the LIP), which act like calculators powered by the firing of neurons.

Reference: Yang & Shadlen. 2007. Probabilistic reasoning by neurons. Nature (doi:10.1038/nature05852)

Technorati Tags: , , , , , , ,
Digg this Del.icio.us Reddit Google Bookmarks Stumbleupon

Related posts on neuroscience:
Bats create spatial memories without making new brain cells
Simple sponges provide clues to origin of nervous system
Maternal hormone shuts down babies’ brain cells during birth
No new brain cells for you – settling the neurogenesis debate
Drugs and stimulating environments reverse memory loss in brain-damaged mice


Orang-utan study suggests that upright walking may have started in the trees

A common theory of human evolution says that after our ancestors descended from the trees, they went form walking on four legs to two. But a new study in orang-utans could overturn that theory, by suggesting that our ancestors evolved a bipedal walk while they were still in the trees.

Did and upright posture evolve in a tree-dwelling ancestor?Walking on two legs, or bipedalism, immediately sets us apart form other apes. It frees our arms for using tools and weapons and is a key part of our evolutionary success. Scientists have put forward a few theories to explain how our upright gait evolved, but the ‘savannah theory’ is by far the most prolific.

It’s nicely illustrated by this misleading image that has become a mainstay of popular culture. It suggests that our ancestors went from four legs to two via the four-legged knuckle-walking gait of gorillas and chimps. Dwindling forests eventually pushed them from knuckle-walking to a full upright posture. This stance is more efficient over long distances and allowed our ancestors to travel across open savannahs.

But this theory fails in the light of new fossils which push back the first appearance of bipedalism to a time before the forests thinned, and even before our ancestors split from those of chimpanzees. Very early hominins, including Lucy (Australopithecus afarensis) and Millennium Man (Orrorin) certainly ambled along on two legs, but they did so through woodland not plains.

Our arms provide a further clue. Even though our ancestors’ back legs quickly picked up adaptations for bipedalism, they steadfastly kept long, grasping arms, an adaptation more suited to moving through branches. To Susannah Thorpe at the University of Birmingham, these are signs that bipedalism evolved while our ancestors were still living in trees.

Two legs good, four legs bad?

Orang-utans can go bipedal and our ancestors may well have done the same in the trees.But there is a snag – an adaptation must provide some sort of benefit. And, as many children painfully discover, it is hard to imagine how walking on two legs could benefit sometime in a tree.

But Thorpe has an answer to this too. She spent a year in the Sumatran jungle, studying the orang-utan – the only great ape to spend the majority of its life in the trees.

She carefully documented over 3,000 sightings of wild orang-utans moving through the treetops. On large sturdy branches, they walk on all fours (below right), and on medium-sized ones, they start to use their arms to support their weight.

But on the thinnest and most unstable branches, the apes use a posture that Thorpe calls ‘assisted bipedalism’ (below left). They grip multiple branches with their long, prehensile toes and use their arms to balance and transfer their weight. And unlike chimps which bend their knees while standing up, bipedal orang-utans keep their legs straight, just like humans do.

An orang-utan used both two-legged and four-legged postures.

It’s a win-win posture – the hands provide extra safety, while the two-legged stance frees at least one hand to grab food or extra support. With it, the apes can venture onto the furthest and thinnest branches, which provides them with several advantages.

As Thorpe says, “Bipedalism is used to navigate the smallest branches where the tastiest fruits are, and also to reach further to help cross gaps between trees.” That saves them energy because they don’t have to circle around any gaps, and it saves their lives because they don’t have to descend to the ground. “The Sumatran tiger is down there licking its lips”, she said.

A new view of ape & human evolution

With these strong adaptive benefits, it becomes reasonable to suggest that bipedalism evolved among the branches. Based on this theory, Thorpe, along with Roger Holder and Robin Crompton from the University of Liverpool, have painted an intriguing new picture of ape evolution.

It begins in the same way as many others – with the rainforests of the Miocene epoch (24 to 5 million years ago) becoming increasingly patchy. For tree-dwelling apes, the gaps in the canopy started becoming too big to cross. But in Thorpe’s view, these ancestral apes were already using a bipedal stance, and different groups took it in separate directions.

Our ancestors were bipedal long before they came down from the trees.The ancestors of orang-utans remained in the increasingly fragmented canopy and became specialised and restricted there. The ancestors of chimps and those of gorillas specialised in climbing up and down trees to make use of food both in the canopy and on the ground. The postures used in vertical climbing are actually very similar to those used in four-legged knuckle-walking and this became their walk of choice on the ground.

The ancestors of humans abandoned the trees altogether. They used the bipedal stance that served them well on thin branches to exploit the potential of the stable land environment. Over time, they brought in further adaptations for efficient walking, culminating in the human walking style that we now neglect by sitting at a computer all day.

Thorpe’s reconstruction is delightfully non-human-centric. It suggests that in the evolution of movement, we were conservatives who relied on a walk that had been around for millions of years. Chimps and gorillas with their fancy new knuckle-dragging gait were the true innovators.

Reference: Thorpe, Holder & Crompton. 2007. Origin of human bipedalism as an adaptation for locomotion on flexible branches. Science 316: 1328-1331.

Image: Black and white image from Science magazine.

Technorati Tags: , , , , ,

Related stuff:
On ape and human evolution:
Chimps show that actions spoke louder than words in language evolution
Hidden ‘junk’ gene separates human brains from chimpanzees
Chimps have more adaptive genetic changes than humans

On the evolution of movement:
Salamander robot walks, swims and sheds light on evolutionary step from sea to land
Microraptor – the dinosaur that flew like a biplane

Spread the word: Digg this Del.icio.us Reddit Google Bookmarks Stumbleupon

Chimps show that actions spoke louder than words in language evolution

Chimpanzees and bonobos use gestures more flexibly and adaptively than other forms of communication. These gestures, and not words, may have been the starting point for the evolution of human language.

Hollywood cavemen typically communicate with grunts and snorts, reflecting a belief that human language originated like this and slowly evolved into the rich and sophisticated tongues we use today.

Chimps and bonobos have thier own vocabularies of gestures.But researchers from Emory University, Atlanta have found evidence that the origins of human language lie in gestures, not words. If they are right, then high-fives, V-signs and thumbs-ups could more closely reflect the beginnings of human language than conversations do.

The importance of gestures

All primates can communicate with each other through facial expressions, body postures and calls, but humans and apes are unique in their use of gestures. These go beyond simple postures or walking patterns – they are movements of the hand, limbs and feet, specifically directed at another individual.

We think of language as mainly spoken or written but gestures play an enormous, often overlooked role. After all, isn’t a speaker who waves their hands animatedly more engaging than one who stands motionless behind a podium?

And they are such an intrinsic part of the way we communicate that a blind speaker will make gestures normally to a blind audience, and babies use gestures long before they learn their first words.

To understand the role of gestures in the origins of human language, Amy PIllock and Frans de Wall decided to see how they are used by our closest relatives – the chimpanzee and the bonobo (the pygmy chimpanzee

How chimps and bonobos communicate

Bonobos may communicate with more sophistication than chimps.For one and a half years, they watched 34 chimps belonging to two separate groups, and 13 bonobos (right), again from two groups. Through painstaking analyses, they identified 31 different gestures and 18 different facial and vocal expressions.

The facial and vocal signals were very consistent between the two species. They were used in the same ways, and in very specific contexts, such as play, grooming or fights. For example, both chimps and bonobos scream when threatened or attacked, a gesture that is shared by many other primates.

This suggests that these signals are an evolutionarily ancient means of communication, and were probably used by the common ancestor that we shared with both chimps and bonobos.

Gestures on the other hand, were altogether more flexible. They were used in all sorts of situations and carried very different meanings depending on the context.

When a chimp stretches out an open hand (below), it can be asking for support during a fight or for a share of food during a meal. In the same way, a person raising his hand could be greeting a friend, surrendering, or answering a question in class.

Chimps use gestures more flexibly than other forms of communication.Chimps and bonobos also differed considerably in their vocabulary of gestures, with each species having its own ‘gesture culture’. The two groups of bonobos even used slightly different sets of gestures to each other.

Gestures and the origins of human language

Pillock and de Waal believe that these studies strongly position gestures as the starting point for human language evolution. In chimps and bonobos, gestures are more adaptable and flexible than calls or facial expressions.

They are relatively disconnected from specific emotions and can be more easily controlled. Facial expressions can give away big clues about a person’s emotional state in all but the best poker faces, but gestures can be used subtly or even deceptively.

Their adaptability means that gestures can be used in many ways and are free to pick up a variety of symbolic meanings. They pick up cultural differences easily, as shown by the very different ‘gesture vocabularies’ used by chimps and bonobos.

Pillock’s and de Waal’s experiments also support other studies which suggest that the language of bonobos is more sophisticated than that of chimps. For a start, their gestures show greater cultural variations.

While bonobos combine them with calls and facial expressions less frequently than chimps do, but they also respond much more strongly to these joint signals. Pillock and de Waal believe that the bonobos could be using these multiple signals more deliberately than chimps to subtly change the meaning of a facial expression or vice versa.

The chimps on the other hand, may just be using joint signals to say the same message more loudly. Among the great apes, the bonobos may deserve the silver medal for their language skills.

Reference: Pollick & de Waal. 2007. Ape gestures and language evolution. PNAS 104: 8184-8189

Technorati Tags: , , , , , ,

Chimps have more adaptive genetic changes than humans

According to new research, chimpanzee genes have shown more adaptive changes than those of humans. The media widely reported the results as evidence that chimps are ‘more evolved’ than humans. But as I discuss here, these headlines are putting words into the researchers’ mouths.

Chimps have more adaptive genetic changes than humansSince the time when humans and chimps evolved from our common ancestor, our species appears to have come on by leaps and bounds. We walk on two legs, we speak using languages and while there is no doubt that chimps are intelligent, there is even less doubt that our brainpower outclasses theirs.

For years, scientists have assumed that our advanced abilities must be reflected in our genetics. After all, traits like intelligence and language give us great adaptive advantages. They should therefore be mirrored by similarly large changes in the human genome, compared to the chimp one.

Not so. Researchers at the University of Michigan sifted through the human and chimp genomes for signs of positive selection – the process where natural selection firmly embeds new mutations because of the advantages they provide. They found that the chimp genome contains 50% more positively-selected genes than the human one.

While earlier studies have compared individual human and chimp genes, this is the first to do a proper census. Margaret Bakewell and colleagues looked at almost 14,000 genes in both species.

The project was given a valuable push by the recent publication of the fully-sequenced rhesus macaque genome. The macaque – a type of monkey – is an evolutionary cousin of both humans and chimps, and provides a useful comparison.

Humans may have fewer adaptive changes than chimps because our population sizes have traditionally been smaller.If the team found a difference in the human and chimp genes, the macaque version can tell them which version is closest to the ancestral one. Previously, scientists had to make do with the mouse, a much more distantly related animal. The macaque’s presence gives the analysis greater accuracy.

Bakewell failed to find any noticeable differences in the function of positively-selected genes in humans and chimps. Both species even had similar proportions of positive changes among the genes that control the brain and nervous systems.

The reasons for this surprising result are unclear, but Bakewell feels that population sizes may hold the answer. For most of their evolution, chimpanzees have enjoyed a larger population size than humans have. It’s only recently that our numbers have ballooned to unfeasible proportions.

According to evolutionary theory, beneficial genetic changes are more quickly established in a population if it is larger. But in smaller groups, random genetic changes can trickle down through generations without being properly weeded out. This ‘genetic drift’ could explain why humans have fewer positively-selected genes than chimps do.

An alternative theory is that many of the human genetic changes that provide us with the greatest advantages may be relatively new developments. It is only recently in our history that we spread around the world from our origins in Africa, and as such, new genetic innovations may not have become established in the population as a whole.

A third theory, which I’m putting forward myself, is that the genetic changes responsible for our most human traits, may lie among stretches of DNA missed by this study. Recently, a study showed that one of the most important ‘genes’ in human evolution lies within our so-called junk DNA and controls the development of our brains. Clearly, we still have much to learn.

Evolution is not about progress.Nonetheless, the study helpfully shows that evolution is not necessarily about progress. It’s not an inexorable march toward some gleaming future. It’s about change, regardless of direction or result.

Somewhere along the line, the word ‘evolved’ started to gain a false value. It became an indicator of positive progress, so that claiming to be ‘more evolved’ than a peer is to claim superiority.

A huge number of newspapers and magazines reported this story under the headline of ‘Chimps more evolved than humans’. And while that may be technically reasonable, the inferences made were anything but.

The inherent values placed upon the phrase ‘more evolved’ clearly emerged in the reaction to the story. Some suggested that humans were obviously ‘less evolved’ given for reasons ranging from pollution to capitalism. Meanwhile, creationists and ID-supporters smelled blood in the water, and claimed that such as blatantly preposterous conclusion proved that evolution was nonsense.

Of course, no such conclusions were actually made by the study itself. In the light of the proper progress-free meaning of the word ‘evolution’, hese results are not preposterous, but fascinating. We should use them to drive a nail in the coffin of phrases like ‘evolutionary race’ or ‘more evolved’, at least in its value-laden non-scientific sense.

Reference: Bakewell, Shi & Zhang. 2007. More genes underwent positive selection in chimpanzee evolution than in human evolution. PNAS 104: 7489-7494.

Technorati Tags: , , , , , ,

Chimerism, or How a marmoset’s sperm is really his brother’s

Marmosets twins often exchange cells as embryos. As a result, individuals can carry tissues that are genetically identical to their siblings. And because these tissues include sperm, marmoset males sometimes fertilise females with the genes of their brothers.

Wied’s marmoset twins exchange stem cells at birth and become genetic chimeras.Imagine you are a man who has just learned, through a genetic test, that your son carried your brother’s genes instead of your own. You might well have some stern words to exchange with your partner. But if you were a marmoset, this would all be part and parcel of life.

In a striking new study, scientists from the University of Nebraska have shown that marmosets inherit genes not only from their parents, but from their monkey uncles and aunts too. Each individual is a genetic chimera.

In Greek mythology, the chimera was a monstrous mixture of lion, goat and dragon (see below). But in the world of genetics, the word has much less grotesque overtones – it simply means an animal whose body contains two or more groups of cells with distinct sets of genes.

Most species of marmoset give birth to non-identical twins. At first, each embryo is surrounded by its own protective sac ­– the chorion – but after the first month of development, these sacs fuse together.

Blood vessels connect the developing embryos and embryonic stem cells can travel between them. These swapped stem cells can eventually set up groups of cells in one twin that contain the other’s genes. So the majority of marmosets have tissues descended from the stem cells of their siblings.

Genetic chimeras are fusions of two genomes, just like the mythological monster was a fusion of different animals.Up till recently, scientists thought that this chimerism only applies to blood cells. But Corinna Ross and colleagues proved otherwise.

They took DNA fingerprints of different organs from 36 twin pairs of Wied’s marmosets (Callithrix kuhlii) from fifteen different families. About three in four pairs had tissues that were genetic matches for their twins – a clear sign of chimerism.

Every single tissue type examined, including brain, skin, hair, muscle, liver and more, was chimeric in at least one set of twins. But the big surprise was over half of the male marmosets had chimeric sperm. Which means that these men were occasionally and unwittingly fertilising females with their sibling’s genes.

Ross found that parents from a third of the families examined passed on some genes to their children that they had themselves inherited from their brothers or sisters. She even speculates that a marmoset mother might be able to pass on a Y chromosome to her children if she was given one by her twin brother.

This unique way of passing on genes has many interesting consequences for marmoset siblings and parents. For a start, it means that marmoset brothers and sisters are more closely related to each other than human siblings are.

Marmoset chimeras can pass down their siblings’ genes onto their children.On average, a pair of human siblings (identical twins aside) shares 50% of their genes. But because marmoset twins often pass entire cell lines across to each other, some of their body parts carry the exact same genes. So on average, marmoset twins have more genes in common than human ones.

This increased relatedness could explain the strong social bonds that unite marmoset families, where parents and older siblings co-operate looking after younger ones. Marmoset fathers are particularly known in the mammal world for their devotion to their children, and again, chimerism might explain why.

Like many other animals, marmosets use certain chemical odours to work out whether a child is related to them, allowing them to care for their own genetic legacy and no one else’s. Ross speculates that chimeric children give off both their own odours and those of their twin, giving male marmosets even stronger evidence of their fatherhood. The purpose of chimerism then, could be to allow marmoset children to pass paternity tests with flying colours.

Indeed, Ross found that they spent more time caring for their children if they were chimeric and spent twice as much time giving them piggy-back rides.

So family trees in the marmoset world are strange ones. It is a world where individuals are a fusion of their own bodies and their sibling’s and where mothers can give birth to their own nephews and nieces. Thankfully, they don’t have to worry about geneaologies…

More about animal sex and reproduction:
Virgin birth by Komodo dragons

Butterflies evolve resistance to male-killing bacteria in record time 
When the heat is on, male dragons become females
Aphids get superpowers through sex

 

Reference: Ross, French & Orti. 2007. Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii). PNAS 104: 6278-6282.

Technorati Tags: , , , , ,

Opinion: Not so unique – the chimpanzee Stone Age, and our place among intelligent animals

This is the 50th article for this blog. I’ve been writing for it for over six months now, and I pleasantly surprised that I’m still finding the enthusiasm to write for it regularly, and that people seem to be reading it.

This special article considers new evidence for the origins of chimpanzee tool use. It is the third piece of research I’ve seen in the last few months which shows that other animals share an ability previously thought to be the sole province of humans. In this article, I consider why these discoveries are now coming to light, and what they mean for us.

In the Ivory Coast, a small stream called Audrenisrou winds its way through the lowland rainforest of the Tai National Park. On the floodplain of this stream, at a site called Nuolo, lie several stones that seem unassuming at first glance. But to the trained eye, they are a window to the past.

Chimps are advanced tool users, and have been for some timeTheir shape is different to other stones that have been worn away by natural erosion. They have been flaked in systematic ways and many are flattened and sharp. Clearly, they were shaped by hand for a purpose – they are tools.

Their creators were not humans, but close relatives who lived in these rainforests thousands of years ago – the ancestors of modern chimpanzees.

Nuolo: humans or chimps?

The Nuolo stones were uncovered by Julio Mercader form the University of Calgary, Christophe Boesch from the Max Planck Institute of Evolutionary Anthropology, and their colleagues. They are a magnificent archaeological find – the first ever evidence of prehistoric ape behaviour anywhere in the world.

Humans have a rich prehistoric past, informed by key archaeological finds like the Olduwan sites. These findings provide us with a window into the past, showing us how our ancestors developed the tools that continue to serve us well today. For chimps, no such sites have been found, until now.

Julio Mercador at the Nuolo excavationThe evidence that the Nuolo specimens were created by chimps is compelling. The density of stone pieces in the site, the preferred types of rocks, the length of the stone flakes and the patterns of wear closely mirror those of modern chimp tools.

They also carry the evidence of their past uses, as hammers and anvils for cracking nuts. Their crevices contain granules of starch that clearly came from nuts. Mercador and Boesch even managed to narrow the granules’ origins down to three possible species, all of which are currently cracked and eaten by today’s chimps. In contrast, the team found scant remains of tubers and legumes, the main food source of forest-dwelling humans.

This suggests that prehistoric humans who also, over time, visited the river-side site were not the creators of the Nuolo tools. But Mercador and Boesch found even stronger evidence.

Human hammers usually weight less than 400g, and even our ancestors’ anvils weighed no more than a kilogram. The far more powerful chimp with its larger hand can wield a tool many times heavier, anywhere from one to nine kilograms in weight.

Mercador and Boesch found that the stone tools at Nuolo most likely weighed about 2 kilograms, far too heavy heavier for a human but well within the limits of even a weak chimpanzee.

A chimpanzee Stone Age

A chimp cracks a nut with a stone hammerTogether, this evidence paints a remarkable picture of a chimpanzee Stone Age, when ancient chimps were clearly cracking nuts in the same way they do now, over four millennia ago.

Chimpanzees are highly advanced tool users. But some critics have sold short their abilities, claiming that they learned the use of tools by, for lack of a better word, apeing nearby humans.

The Nuolo finds puts paid to that suggestion. The tools predated the advent of farming in the rainforest by some time. Nuolo also lacks evidence of any of the other tools used by humans to grind and pound starchy tubers.

Among chimpanzees, nut-cracking is clearly a cultural tradition, passed down over time through over 200 generations of chimps. Humans and chimps either developed this technology independently, or they inherited it from a common ancestor who had already begun to use tools.

We’re not so unique after all

With studies like this, the list of attributes that are unique to humans seems to be getting smaller all the time. In just the last few months, scientists have found that chimpanzees hunt with spears, jays (below) can plan for the future, and even the long-dead dinosaur Bambiraptor, gripped prey with opposable fingers.

The beautiful western scrub-jay - a bird that can plan for the future.But as we start to come down from our pedestal, we should not mourn the loss of our position, but rejoice in our connectedness with the rest of the living world. These discoveries emphasise our position at the end of a continuous evolutionary spectrum, rather than atop a looming precipice.

The outdated view that we have been awarded special dominion over other life should be replaced by a humbler view, where our position of biological authority is tempered with respect.

Why has it taken so long for such findings to come to light? Centuries ago, anthropomorphism was commonplace and these experiments would have seemed like pointing out the obvious. But of late, biology has taken a more reductionist turn and signs of potential animal behaviour are scrutinised under the harshest and most sceptical light.

In many cases, this quite rightly avoids the false conclusions based on flimsy and anecdotal evidence. But while scientists have taken great care to ensure that their interpretations are not biased towards human perspectives, the same cannot always be said the design of the experiments themselves.

Looking for intelligence

One of the most significant problems with studying animal intelligence is that many species experience and react to the world in completely different ways to us. For example, to pass the classic test for self-awareness, an animal must show that it recognises itself in a mirror, by examining a mark previously made on its face (see right).

elephants-paper32.jpgGorillas and dogs tend to fail the mirror test, but not because they are mentally less advanced than successful examinees like elephants or chimps. Gorillas view direct eye contact is a sign of aggression and tend to avoid it, while dogs rely on smell as their primary sense, rather than sight.

Simply put, can we truly claim to understand the limits of another animal’s intelligence when we know so comparatively little about their behaviour or perceptions? Cleverly designed experiments may bring us closer to an answer, but sadly, we may never get the opportunity to conduct them.

800px-bottlenose_dolphin_ks.jpgSave ourselves, the most intelligent animals on the planet – the great apes, elephants, dolphins and whales – are mostly endangered, with many species facing a very real threat of extinction. Chimpanzees, like those in the Tai National Park are under threat from the loss of their habitat, and the illegal bushmeat trade.

A massive amount of evidence now paints these, our closest cousins, as sophisticated animals with their own culture. Imagine how tragic it would be if they died out for good, leaving only a set of shaped stones as the only lasting signs of their intelligence.

Reference: Mercader, Barton, Gillespie, Harris, Kuhn, Tyler & Boesch. 2007. 4,300-Year-old chimpanzee sites and the origins of percussive stone technology. PNAS 104: 3043-3048.

Technorati Tags: , , , , ,