Canny breeding creates vitamin A-rich maize without genetic modification

Blogging on Peer-Reviewed ResearchOn Thursday, I wrote about a way of genetically modifying carrots to turn them into rich sources of calcium. The method could be more widely used in vegetables to help reduce nutritional deficiencies, but it risks raising the ire of the anti-GM environmentalist camp. But there is another way of altering the genes of crop plants that avoids such controversy, and it’s a traditional one – selective breeding.

Types of maizeBy cross-breeding individuals with desirable qualities, farmers have been tinkering with the genes of both animals and plants for centuries. Traditionally, the process has been a bit messy. Genes don’t always easily translate into physical characteristics, so there is a certain amount of trial-and-error involved.

Now, Carlos Harjes from Cornell University had developed a way of using modern genetic techniques to make selective breeding even more selective. For his first trick, he has developed a variety of maize to combat vitamin A deficiencies. Best of all, no genes were added, tweaked or subtracted in the making of this vegetable – he only used the natural genetic variation within the world’s maize strains.

Continue reading

Loss of big mammals breaks alliance between ants and trees

Blogging on Peer-Reviewed ResearchThe natural world is full of alliances forged between different species, cooperating for mutual rewards. The relationship between ants and acacia trees was one of the first of these to be thoroughly studied. But new research suggests that this lasting partnership may be sundered by the unlikeliest of reasons – the decline of Africa’s large mammals.

Giraffe next to whistling-thorn acaciaAcacias are under constant attack from hungry animals, from tiny caterpillars to towering giraffes. In response, many species like the whistling-thorn tree (Acacia drepanolobium) recruit colonies of ants as bodyguards. Any hungry herbivores eager to chomp on the acacia’s leaves quickly get a mouthful of biting, stinging ants. The tree is a fair employer. In return for their services, its ant staff receive a sugary and nutritious nectar as food and hollow swollen thorns called ‘domatia’ as board.

But this pact is a fragile one. Todd Palmer from the University of Florida and colleagues from the USA, Canada and Kenya have found that it rapidly breaks down if the large animals that graze on the acacia disappear. Without the threat of chomping mouths, the trees reduce their investments in bodyguards to the detriment of both partners.

Palmer demonstrated this with plots of land in Kenya’s Laikipia Plateau, where fences have kept out large plant-eaters for over a decade. Since 1995, no herbivore larger than a small antelope has entered the four-hectare “exclosures” in an attempt to study the effect of these animals on the local ecology.

Within these 10 years, Palmer found that the majority of trees produced fewer domatia and less nectar and unexpectedly, the strongest alliances were hit the hardest. What were once happy partners quickly became selfish rivals.

Continue reading

Ancient plants manipulate insects for hot, smelly sex

Thrips flee a stinky cycad coneFor plants too, sex can be a hot and smelly affair. In most plant-insect partnerships, the pollinator seems to do most of the work by voluntarily transferring pollen from plant to plant in exchange for a meal.

But an ancient lineage of plants – the cycads – takes more active steps to ensure its future with a bizarre combination of heat and smells. In the afternoon, they use heat and a toxic stench to drive insects out of male cones only to lure them into female cones in the evening with a more alluring scent.

Continue reading

New plant species arise from conflicts between immune system genes

Plants from the same species can fail to breed together because incompatible genes from the parents cause the offspring’s immune system to fatally turn on itself. These conflicts between otherwise normal genes could split groups of the same plant into separate species.

Hybrid necrosis in Arabidopsis is the result of clashing immune system genes“Congratulations, it’s a stunted, malformed, necrotic hybrid!” Those aren’t really the words that new parents want to hear but thankfully, plants aren’t in a position to be that upset.

In several species of plants, a surprising number of offspring turn out to be malformed hybrids that quickly wither and die. Now, Kirsten Bomblies and colleagues from the Max Planck Institute for Developmental Biology have found out why.

Two genes, one passed down by each parent, ignite an reaction in the hybrid youngster that turns its immune system against it. It’s not a genetic disorder; neither gene was faulty and both were harmless in their native parental environments. But they evolved apart from each other and make poor bedfellows when united.

They behave like employees from two merging companies. Having developed in different backgrounds and working cultures, they can find it difficult to work together, lowering the productivity of the new business.

Over time, these incompatibilities could drive wedges between different plant strains, reducing their chances of successful mating and turning separate strains into separate species.

Continue reading

Human nitrogen emissions indirectly capture carbon by fertilising forests

Human activity has greatly increased the levels of active nitrogen in the environment. By acting as a fertiliser and speeding the growth of forests, this extra nitrogen has indirectly locked up more carbon dioxide in the world’s trees.

There is no doubt that of all the elements in the entire periodic table, carbon is currently hogging the limelight. As it cycles through our environment, the policy decisions and economic futures of entire countries hang in the balance.

Industrial exhausts pump huge amounts of nitrogen into the atmosphere.For all its media-whoring, you might be forgiven for forgetting that carbon is not the only element we are belching into the environment. Over the last century, we have greatly overwhelmed the natural nitrogen cycle too.

Nitrogen – the neglected element

Through the manufacture of nitrogen-based fertilisers and the exhausts of our cars, power plants and factories, we have more than doubled the natural levels of active nitrogen in the atmosphere.

Nitrogen is a valuable commodity in many parts of the world, and restricts the growth of local plant life. As such, the recent man-made influx has led to large increases in plant growth. In some cases like algal blooms that choke rivers and lakes, it’s too much of a good thing. But there is a silver lining.

Federico Magnani from the University of Bologna, together with an international team of scientists, have found that the changes in the nitrogen cycle may have been inadvertently fertilising our forests.

Carbon and nitrogen

The world’s forests act as massive carbon sinks, delaying the global warming effects of carbon dioxide by trapping it in prisons of wood and leaves. And larger forests mean more trapped carbon. The temperate forests of the Northern Hemisphere alone could store a massive 600 megatonnes of carbon every year.

The carbon and nitrogen cycles dance around each other in complex ways. When nitrogen levels increase, forests respond by channelling growth from roots to leaves and trunks. These above-ground organs are more enduring than roots and retain sequestered carbon for a longer time. More leaves also means increased photosynthesis, which serves to draw more carbon dioxide in from the air.

The extra nitrogen also delays the decay of leaf litter, further halting the release of organic carbon into the atmosphere.

The world’s forests act as massive carbon stores.Magnani’s colleagues are not the first group to try and look at the interplay between nitrogen levels and carbon capture. But other studies have found it difficult or impossible to account for the effects of nitrogen alone.

Carbon balance

A forest’s carbon balance – the amount of carbon trapped versus the amount released – depends on a variety of factors, including its age, logging, fires, and more. Some of these are easy to account for at a small scale. For example, when logging or fires kill off patches of forest, they become net sources of carbon as they start to regrow.

But after a couple of decades or so, the mature forest turns into a carbon sink, and the amount it stores outweighs the amount it releases. Clearly, a forest’s carbon balance changes as it matures, but real forests consist of patches of vegetation are very different ages.

To look at the overall picture, Magnani’s group took direct measurements of the carbon balance over a long period of time, from a network of forest sites in Western Europe and the USA. This allowed them to account for short-term sources of variation. And by using direct measurements, they have surpassed the models and simulations of previous studies.

The group found that carbon balance corresponds well with nitrogen levels in the area. In fact, the prowess of some forests at carbon capture seem to be overwhelmingly driven by their extra nitrogen boost. Our effects on the nitrogen cycle may have been acting like an unexpected carbon offset scheme.

Practicalities

By fertilising forests, nitrogen emissions could offset carbon emissions.So should we start pumping nitrogen in our forests to trap more carbon dioxide? Certainly, Magnani’s results suggest that small extra amounts of nitrogen can cause unexpectedly large levels of carbon capture. But his view and those of other commentators is a resounding “Not yet”.

There are still many questions left to be answered, particularly about the exact relationship between nitrogen addition and carbon levels. There is some evidence that some temperate forests are suffering from nitrogen saturation. Could adding more nitrogen damage them, or prevent them from returning to a situation where nitrogen is limited and not free-flowing?

And what of the other risks and benefits? The extra wood from the faster-growing trees could find a use as a replacement for concrete, a notoriously eco-unfriendly building material. But additional nitrogen could affect other animals and plants in the local environment. Would biodiversity suffer if certain species monopolise the newfound nitrogen bonuses?

As future research addresses these questions, those involved in forest management would do well to heed the importance of the world’s forests in sequestering carbon dioxide. There are other ways of increasing forest coverage besides mass-fertilisation, and the most obvious one is safeguarding the forests that we already have!

Reference: Magnani, Mencuccini, Borghetti, Berbigier, Berninger, Delzon, Grelle, Hari, Jarvis, Kolari, Kowalski, Lankreijer, Law, Lindroth, Loustau, Manca, Moncrieff, Rayment, Tedeschi, Valentini & Grace. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 848-850.

Technorati Tags: , , , , ,

Of flowers and pollinators – a case study in punctuated evolution

Darwin predicted that flowers and pollinators are engaged in an evolutionary arms race. But that’s not always the case. In a group called columbines, evolution happened in a stop-start ‘punctuated’ way, as the flowers encountered new pollinators with increasingly long tongues.

Charles Darwin was a visionary in more ways than one. In 1862, Darwin was studying a Malagasy orchid called Angraecum sesquipedale, whose nectar stores lie inaccessibly at the bottom of a 30cm long spur (tube). Darwin predicted that the flower was pollinated by a moth with tongue long enough to raid the spur.

Darwin’s moth, perfectly adapted to drink from a long-spurred orchid.Few people believed him, but in 1903, zoologists discovered Darwin’s predicted moth, Xanthopan morgani praedicta, and it did indeed have a very long tongue. Darwin’s accurately predicted the extraordinary but matching lengths of moth tongue and orchid spur, but his explanation for them is another story.

The arms race model

He suggested that the two species were locked in an ‘evolutionary arms race’. Orchids and pollinators gradually co-evolved over time, lengthening both tongues and spurs in response to each other.

Orchids with the longest spurs have an advantage. Their nectar stores are only just within reach of pollinators, so they are tempting but don’t sacrifice too much valuable nectar. For pollinators, the advantage belongs to those with the longest tongues because they have access to the most food.

The arms race model has become widespread and popular since Darwin’s time. It helps to explain relationships between predators and prey, parasites and hosts and even males and females. But its original function – to explain the relationship between flowers and pollinators – has just been called into question.

Columbines

Justen Whittall and Scott Hodges from the University of California, Santa Barbara, tested the arms race theory by looking at another long-spurred flowering plants – the columbines (Aquilegia sp). In these flowers, every petal carries its own elongated nectar spur and the advent of these spurs coincided with the recent and rapid diversification of this group.

Columbines of North America have a great range of spur sizesWhittall and Hodges charted the evolutionary relationships between the 25 North American columbine species, whose spurs range form barely a centimetre in length, to just over twelve. They found that this great variety of lengths was driven by changes in pollinators, rather than gradual races against a single one.

The flowers with the shortest spurs were pollinated by short-tongued bumblebees. Hummingbirds, whose tongues are longer, pollinate columbines with longer spurs, while hawk-moths, with the longest tongues of all, carry the pollen of the longest-spurred flowers.

There is no overlap between these three groups and once a lineage switches pollinator it doesn’t go back. Over the course of their evolution, the columbine lineages went from bumblebees to hummingbirds, and then to hawkmoths, lengthening their spurs with every jump.

The ‘pollinator shift’ model

Based on these observations, Whittall and Hodges put forward an alternative to Darwin’s arms race model. They imagined a columbine ancestor that was well adapted to the tongue length of a specific pollinator (say, a bumblebee).

In part of its range, the flower started to be visited by a second pollinator (say, a hummingbird) with a much longer tongue. In this area, the plant rapidly evolved a longer spur in response to its new partner and over time, this led to two species with different spur lengths and different pollinators.

In this model, the columbines’ spurs evolved in a ‘punctuated’ stop-start way, very different to Darwin’s model of gradual change. Each pollinator shift triggered a large evolutionary rush, as the species lengthened their spurs in response to the longer tongues of their new partners. In between these shifts, the pace of evolution slowed down considerably.

A columbine flower - its long spurs are driven by evolutionary shifts between pollinatorsBut Darwin’s arms race idea isn’t out for the count yet. Whittall points out that columbines that are pollinated by hawkmoths have a great variety of spur lengths themselves that were most likely the result of an arms race. And the moths themselves evolved long before the columbines did, so the variations in their tongue lengths must have evolved in relationships with other plants.

An adaptive valley

The stop-start model also explains a difference between columbines around the world. Those in Europe and Asia have a much smaller range of spur lengths than their North American cousins, and none of them are pollinated by hawkmoths. Whittall and Hodges have an answer for this too – it’s because Eurasia has no hummingbirds.

Imagine if flowers tried to make the evolutionary leap from bumblebee to hawkmoth without the intermediate stepping stone of hummingbirds. At the intermediate spur length, the flower would have excluded its old pollinator, whose tongues would now be too short to reach any nectar. But it would have no advantage over its new pollinator, whose amply long tongues could drink the flowers dry.

Between bumblebee and hawkmoth lies an ‘adaptive valley’, where intermediate-length flowers have no advantage and are ignored by natural selection. In Eurasia, there is not enough impetus for a species to cross it. But North America, the hummingbirds act as a stepping stone that allowed the columbines to ford this gap and evolve even more extreme flowers.

Reference: Whittall & Hodges. 2007. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447: 706-709.

Technorati Tags: , , , , , , , , , ,

Images: Moth from MSN Encarta, columbine montage from Justen Whittall’s website.

Related stories about evolution:
Natural selection does a handbrake turn – quick evolution at work
Salamander robot walks, swims and sheds light on evolutionary step from sea to land
Human cone cell lets mice see in new colours
Living optic fibres bypass the retina’s back-to-front structure
Viruses evolve to be more infectious in a well-connected population
The evolution of animal personalities – they’re a fact of life

The effect of GM crops on local insect life

A large study weighs up the existing evidence on the impact of GM crops on local insect life, providing some much-needed scientific rigour to the GM debate.

In Europe, the ‘GM debate‘ about the merits and dangers of genetically-modified (GM) crops is a particularly heated one. There is a sense of unease about the power of modern genetic technology, and a gut feeling that scientists are ‘playing God’. These discontents are stoked by the anti-GM camp, who describe GM crops with laden and fear-mongering bits of unspeak like ‘Frankenstein foods’ and ‘unnatural’.

Bt cotton is better for non-targeted insects than non-resistant crops sprayed with insecticdes.In a debate so fuelled by emotion and personal values, scientific research and a critical analysis of the evidence rarely gets a look-in. But science has to grudgingly admit some blame in this, because there is actually precious little research on the safety of GM crops. And many of the studies that have been done were short-term and poorly replicated.

A lack of research is dangerous. It provides opening for people on either side of the debate to quote single, small studies as canon and brushing aside any research that contrasts with their stances.

Adding evidence to the debate

Michelle Marvier and colleagues from Santa Clara University, California, are trying to change all that. They have analysed over 42 field experiments on GM crops to get an overall picture about their safety. The technique they used is called meta-analysis, a statistical tool that asks “What does everyone think?” It works on the basis that individual small studies may be far from conclusive, but pooling their results together can lead to stronger and more accurate results.

They looked at three strains of GM-crops that had been modified with genes from a soil-dwelling bacterium called Bacillus thuringiensis. The transferred genes are responsible for producing a number of biological (and therefore ‘natural’) insecticides. When moving them across to plants, geneticists typically try to match the insecticide to the pest they are trying to fight. (In the image on the right, Bt-peanut leaves are protected from the damaging European corn borer)Some GM crops are resistant to specific insect pests.

The toxins are delivered at high dosages to pests, but are restricted to the plant (and sometimes even to particular tissues). They can also be added to the chloroplast genome, which is quite separate form the plant’s nuclear DNA. This stops them from being transferred to other plants.

The hope is that these so-called ‘Bt crops’ can help to minimise the collateral damage of less targeted insecticide sprays. In theory, only pest insects that eat valued crops are killed, while the rest of the ecosystem is unharmed.

The results

That’s what Marvier set out to test. She looked at field experiments which tested the impact of caterpillar-resistant cotton and maize plants on the abundance of other groups of insects and invertebrates.

She found that these other creatures are found in greater numbers in fields containing the caterpillar-resistant GM plants, compared to those sprayed with conventional insecticides. However, the GM crops also led to slightly lower numbers of non-targeted insects compared to fields where no GM crops and no insecticides were used.

The results stayed the same even when Marvier analysed them in more detail. For example, she found much the same thing when she only looked at experiments that had been published in peer-reviewed scientific journals.

So assuming that Bt crops do indeed reduce the use of insecticides (and that’s far from proven), then they will also, as claimed, reduce the collateral damage caused by these chemicals. But they’re not as good for the environment as using no insecticides at all, be they engineered or sprayed.

The bigger picture

Bt-crops are better than large-scale insecticide spraying.At the local level, Marvier’s study provides some much-needed scientific backbone to the GM debate. But the real decisions need to be weighed up at a larger level. For example, it’s all well and good to say that a no-insecticide, no-GM field is the best solution, but that leaves farmers in a bit of a lurch.

One of the big criticism levelled against organic farming is that it leads to lower yield than other practices and requires more agricultural land to be viable and that deals a bad hand to farmers in the developing world. This in turn could lead to deforestation and habitat loss.

On the other hand, Marvier advises caution when interpreting her work. This study has revealed just one benefit of GM crops and even then, only for one specific type of genetic modification. Many of the studies involved isolated patches of land, rather than entire farming systems, where the situation is more subtle. Not all non-GM crops are sprayed with insecticides, while not all GM crops are free from them.

Any benefits must also be weighed against potential health or environmental risks, and again, these must be researched carefully.

To Marvier, the clearest message from her study is that we have started to accumulate enough data to look at this issue from an empirical, evidence-based point of view. If we are to make sound decisions, there is little room for anecdotal evidence or knee-jerk responses guided by personal philosophy.

Bt hypocrisy

For example, there is a certain irony to the opposition to Bt crops. Because its insecticides are ‘natural’, the bacterium is one of the few pesticides that organic farmers are allowed to spray onto their crops.

The bacteria of course use the exact same genes that are transplanted into Bt-engineered crops. Some may argue that this method is better because it is more ‘natural’, because the genes stay within the organism they were intended for. But is that really better?

Wholesale Bt spraying is a crude technique than the specific and targeted use of Bt-engineered crops. It means that the surrounding land is also covered in the bacteria and creatures other than pests are exposed to its entire gamut of toxins. And because farmers need constant supplies of the bacteria, it soaks up more money.

Reference: Marvier, McCreedy, Regetz & Kareiva. 2007. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316: 1475-1477.

Technorati Tags: , , , , , , , , ,

Related stories on genetic modification:

Genetically-modified mosquitoes fight malaria by outcompeting normal ones
Magnifection: mass-producing drugs in record time
Feed the world – turning cotton into a food crop